Ascorbic Acid-Assisted Stabilization of α-Phase CsPbI3 Perovskite for Efficient and Stable Photovoltaic Devices
Yanqiang Hu
College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
School of Physics and Photoelectronic Engineering, Ludong University, Yantai, 264025 Shandong Province, P. R. China
Search for more papers by this authorQinfeng Xu
School of Physics and Photoelectronic Engineering, Ludong University, Yantai, 264025 Shandong Province, P. R. China
Search for more papers by this authorWei Ruan
College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
School of Physics and Photoelectronic Engineering, Ludong University, Yantai, 264025 Shandong Province, P. R. China
Search for more papers by this authorCorresponding Author
Shufang Zhang
College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
School of Physics and Photoelectronic Engineering, Ludong University, Yantai, 264025 Shandong Province, P. R. China
Search for more papers by this authorChuanlu Yang
School of Physics and Photoelectronic Engineering, Ludong University, Yantai, 264025 Shandong Province, P. R. China
Search for more papers by this authorCorresponding Author
Zhong Yan
College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorCorresponding Author
Feng Xu
College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorYanqiang Hu
College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
School of Physics and Photoelectronic Engineering, Ludong University, Yantai, 264025 Shandong Province, P. R. China
Search for more papers by this authorQinfeng Xu
School of Physics and Photoelectronic Engineering, Ludong University, Yantai, 264025 Shandong Province, P. R. China
Search for more papers by this authorWei Ruan
College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
School of Physics and Photoelectronic Engineering, Ludong University, Yantai, 264025 Shandong Province, P. R. China
Search for more papers by this authorCorresponding Author
Shufang Zhang
College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
School of Physics and Photoelectronic Engineering, Ludong University, Yantai, 264025 Shandong Province, P. R. China
Search for more papers by this authorChuanlu Yang
School of Physics and Photoelectronic Engineering, Ludong University, Yantai, 264025 Shandong Province, P. R. China
Search for more papers by this authorCorresponding Author
Zhong Yan
College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorCorresponding Author
Feng Xu
College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorAbstract
The all-inorganic α-CsPbI3 perovskite with superb thermal stability and suitable band gap for light harvesting has been considered as a promising candidate for efficient perovskite solar cells (PSCs). However, the photoactive black α-CsPbI3 is thermodynamically unstable and transforms spontaneously into nonphotoactive yellow δ-phase at room temperature. Herein, a facile method is reported to prepare α-CsPbI3 perovskite films with high stability at room temperature by mixing a small amount of ascorbic acid (AA) in the CsPbI3 precursor solutions. It is revealed that the interaction of AA with the CsPbI3 precursors could effectively inhibit the rapid crystallization of CsPbI3 and reduce the size of the coordination colloidal, and thus decrease the grain size of CsPbI3 for preparing long-term stable α-CsPbI3 films. The PSCs based on the AA-stabilized CsPbI3 films exhibit reproducible photovoltaic performance with a champion efficiency of up to 11.44% and stable output of 11.30%, along with excellent stability, retaining more than 76% of its initial efficiency after aging in ambient conditions for 250 h without encapsulation. Most importantly, such low-cost, solution-processable inorganic PSCs with high performance also show promising potential for large-scale preparation.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
solr201900287-sup-0001-SuppData-S1.doc2.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 2S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
- 3G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344.
- 4G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 982.
- 5W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, Science 2017, 356, 1376.
- 6N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, J. Seo, Nat. Energy 2018, 3, 682.
- 7https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf (accessed: Apr 2019).
- 8Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J. M. Pringle, U. Bach, L. Spiccia, Y.-B. Cheng, J. Mater. Chem. A 2015, 3, 8139.
- 9M. Salado, L. Calio, R. Berger, S. Kazim, S. Ahmad, Phys. Chem. Chem. Phys. 2016, 18, 27148.
- 10B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis, H.-G. Boyen, Adv. Energy Mater. 2015, 5, 1500477.
- 11J. A. Christians, P. A. Miranda Herrera, P. V. Kamat, J. Am. Chem. Soc. 2015, 137, 1530.
- 12Z. Song, A. Abate, S. C. Watthage, G. K. Liyanage, A. B. Phillips, U. Steiner, M. Graetzel, M. J. Heben, Adv. Energy Mater. 2016, 6, 1600846.
- 13L. K. Ono, Y. Qi, S. Liu, Joule 2018, 2, 1961.
- 14E. J. Juarez-Perez, L. K. Ono, M. Maeda, Y. Jiang, Z. Hawash, Y. Qi, J. Mater. Chem. A 2018, 6, 9604.
- 15J. Hieulle, X. Wang, C. Stecker, D.-Y. Son, L. Qiu, R. Ohmann, L. K. Ono, A. Mugarza, Y. Yan, Y. Qi, J. Am. Chem. Soc. 2019, 141, 3515.
- 16R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, H. J. Snaith, Adv. Energy Mater. 2016, 6, 1502458.
- 17R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, M. D. McGehee, J. Phys. Chem. Lett. 2016, 7, 746.
- 18W. Ahmad, J. Khan, G. Niu, J. Tang, Solar RRL 2017, 1, 1700048.
- 19S. Sharma, N. Weiden, A. Weiss, Z. Phys. Chem. 1992, 175, 63.
- 20G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, H. J. Snaith, J. Mater. Chem. A 2015, 3, 19688.
- 21P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu, Y. Lu, J. Phys. Chem. Lett. 2016, 7, 3603.
- 22Y. Hu, F. Bai, X. Liu, Q. Ji, X. Miao, T. Qiu, S. Zhang, ACS Energy Lett. 2017, 2, 2219.
- 23Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen, J. Huang, Joule 2017, 1, 371.
- 24B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, L. Yin, Nat. Commun. 2018, 9, 1076.
- 25X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu, H. Zeng, Small 2017, 13, 1603996.
- 26J. Liang, J. Liu, Z. Jin, Solar RRL 2017, 1, 1700086.
- 27A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, Science 2016, 354, 92.
- 28A. Waleed, M. M. Tavakoli, L. Gu, S. Hussain, D. Zhang, S. Poddar, Z. Wang, R. Zhang, Z. Fan, Nano Lett. 2017, 17, 4951.
- 29E. M. Hutter, R. J. Sutton, S. Chandrashekar, M. Abdi-Jalebi, S. D. Stranks, H. J. Snaith, T. J. Savenije, ACS Energy Lett. 2017, 2, 1901.
- 30M. Lai, Q. Kong, C. G. Bischak, Y. Yu, L. Dou, S. W. Eaton, N. S. Ginsberg, P. Yang, Nano Res. 2017, 10, 1107.
- 31K. Yan, M. Long, T. Zhang, Z. Wei, H. Chen, S. Yang, J. Xu, J. Am. Chem. Soc. 2015, 137, 4460.
- 32B. Li, M. Li, C. Fei, G. Cao, J. Tian, J. Mater. Chem. A 2017, 5, 24168.
- 33W. Li, J. Fan, J. Li, Y. Mai, L. Wang, J. Am. Chem. Soc. 2015, 137, 10399.
- 34B. Zhao, S.-F. Jin, S. Huang, N. Liu, J.-Y. Ma, D.-J. Xue, Q. Han, J. Ding, Q.-Q. Ge, Y. Feng, J.-S. Hu, J. Am. Chem. Soc. 2018, 140, 11716.
- 35C. Zhang, S. Zhang, X. Miao, Y. Hu, L. Staaden, G. Jia, Part. Part. Syst. Charact. 2017, 34, 1600298.
- 36T. Qiu, Y. Hu, F. Bai, X. Miao, S. Zhang, J. Mater. Chem. A 2018, 6, 12370.