Tracking In Vivo Lipolysis of Lipid Nanocarriers Using NIR-II Polarity-Sensitive Fluorescent Probes
Yanlei Zhan
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
Search for more papers by this authorZhichao Chang
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
Search for more papers by this authorChang Liu
Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443 P. R. China
Search for more papers by this authorZiyu Zhang
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
Search for more papers by this authorRuntong Zhang
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
Search for more papers by this authorYi Lu
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
Fudan Zhangjiang Institute, Shanghai, 201203 P. R. China
National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203 P. R. China
Search for more papers by this authorJianping Qi
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203 P. R. China
Search for more papers by this authorCorresponding Author
Wei Wu
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443 P. R. China
Fudan Zhangjiang Institute, Shanghai, 201203 P. R. China
National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203 P. R. China
Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haisheng He
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYanlei Zhan
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
Search for more papers by this authorZhichao Chang
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
Search for more papers by this authorChang Liu
Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443 P. R. China
Search for more papers by this authorZiyu Zhang
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
Search for more papers by this authorRuntong Zhang
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
Search for more papers by this authorYi Lu
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
Fudan Zhangjiang Institute, Shanghai, 201203 P. R. China
National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203 P. R. China
Search for more papers by this authorJianping Qi
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203 P. R. China
Search for more papers by this authorCorresponding Author
Wei Wu
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443 P. R. China
Fudan Zhangjiang Institute, Shanghai, 201203 P. R. China
National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203 P. R. China
Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haisheng He
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203 P. R. China
National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Elucidating in vivo lipolysis is crucial for clarifying the underlying mechanisms and in vivo fates of lipid-based nanocarriers, which are essential oral drug delivery carriers. Current mainstream methodologies use various in vitro digestion models to predict the in vivo performance of lipid formulations; however, their accuracy is often impeded by the complicated environment of the gastrointestinal tract. Although fluorescence labeling with conventional probes partly reveals the in vivo translocation of lipid nanocarriers, it fails to elucidate the lipolysis process because of poor signal discrimination among nanocarriers, free probes, and mixed micelles (lipolysis end-products). Here, a polarity-sensitive probe (PN-C18) with aggregation-caused quenching properties for labeling lipid nanocarriers is developed and optimized. PN-C18 successfully eliminates interference from both free probes and mixed micelles during lipolysis. In a representative in vitro lipolysis model, PN-C18 labeling shows stronger correlation between fluorescence intensity and lipolysis progression than those of previous methods. In vivo, the translocation and lipolysis of lipid nanoparticles are clearly visualized and effectively monitored, owing to the high tissue-penetrating capability of PN-C18 NIR-II photons. This study provides practical means for elucidating the in vivo fate of lipid-based drug delivery systems and offers valuable insights and reference for further studies in this domain.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202402249-sup-0001-SuppMat.docx29 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Tu, L. Zhu, Curr. Drug Targets 2014, 15, 502.
- 2A. Ashkar, A. Sosnik, M. Davidovich-Pinhas, Biotechnol. Adv. 2022, 54, 107789.
- 3M. Mahmoudian, S. Maleki Dizaj, S. Salatin, R. Lobenberg, M. Saadat, Z. Islambulchilar, H. Valizadeh, P. Zakeri-Milani, Expert Opin. Drug Delivery 2021, 18, 1707.
- 4S. Yan, Y. Cheng, L. Li, C. Zhong, C. Chen, X. Gao, J. Drug Delivery Sci. Technol. 2023, 87, 104770.
- 5Y. Tanaka, T.-H. Nguyen, E. J. A. Suys, C. J. H. Porter, Mol. Pharmaceutics 2021, 18, 1768.
- 6D. V. Bhalani, B. Nutan, A. Kumar, A. K. S. Chandel, Biomedicines 2022, 10, 2055.
- 7Y. Su, J. Liu, S. Tan, W. Liu, R. Wang, C. Chen, Drug Delivery 2022, 29, 1437.
- 8L. Li, S. Chunta, X. Zheng, H. He, W. Wu, Y. Lu, Chin. Chem. Lett. 2024, 35, 108662.
- 9A. D. Permana, M. A. S. b. Mahfud, M. Munir, A. Aries, A. R. Putra, A. Fikri, H. Setiawan, I. Mahendra, A. Rizaludin, A. Y. R. Aziz, Y. Y. Djabir, A. Arsyad, Y. Harahap, W. D. Saputri, R. Fajarwati, N. Darmawan, ACS Appl. Mater. Interfaces 2024, 16, 68388.
- 10H. Jing, X. Huang, X. Du, L. Mo, C. Ma, H. Wang, Carbohydr. Polym. 2022, 278, 118993.
- 11R. Liu, C. Luo, Z. Pang, J. Zhang, S. Ruan, M. Wu, L. Wang, T. Sun, N. Li, L. Han, J. Shi, Y. Huang, W. Guo, S. Peng, W. Zhou, H. Gao, Chin. Chem. Lett. 2023, 34, 107518.
- 12S. Haddadzadegan, F. Dorkoosh, A. Bernkop-Schnuerch, Adv. Drug Delivery Rev. 2022, 182, 114097.
- 13M. Braeckmans, P. Augustijns, R. Mols, C. Servais, J. Brouwers, Pharmaceutics 2022, 14, 952.
- 14B. Cervantes-Paz, J. de Jesus Ornelas-Paz, S. Ruiz-Cruz, C. Rios-Velasco, V. Ibarra-Junquera, E. M. Yahia, A. A. Gardea-Bejar, Food Res. Int. 2017, 99, 917.
- 15S. Amara, M. Gerlei, C. Jeandel, M. Sahaka, F. Carriere, M. Linder, Food Funct. 2024, 15, 11291.
- 16T. Karamanidou, V. Bourganis, O. Kammona, C. Kiparissides, Nanomedicine 2016, 11, 3009.
- 17C. Dima, E. Assadpour, A. Nechifor, S. Dima, Y. Li, S. M. Jafari, Crit. Rev. Food Sci. Nutr. 2024, 64, 8501.
- 18C. Pigliacelli, P. Belton, P. Wilde, F. B. Bombelli, P. A. Kroon, M. S. Winterbone, S. Qi, Colloids Surf., B 2023, 222, 113044.
- 19B. J. Boyd, A. J. Clulow, Biochem. Soc. Trans. 2021, 49, 1749.
- 20C. J. H. Porter, C. W. Pouton, J. F. Cuine, W. N. Charman, Adv. Drug Delivery Rev. 2008, 60, 673.
- 21A. Moonwiriyakit, N. Pathomthongtaweechai, P. R. Steinhagen, P. Chantawichitwong, W. Satianrapapong, P. Pongkorpsakol, Tissue Barriers 2023, 11, 114.
- 22R. Berthelsen, M. Klitgaard, T. Rades, A. Mullertz, Adv. Drug Delivery Rev. 2019, 142, 35.
- 23A. M. dos Santos, S. G. Carvalho, A. B. Meneguin, R. M. Sabio, M. P. D. Gremiao, M. Chorilli, J. Controlled Release 2021, 334, 353.
- 24A. Aljabbari, S. Kihara, T. Rades, B. J. Boyd, J. Controlled Release 2023, 363, 536.
- 25Y. Chen, J. Wang, J. Xu, J. Zhang, S. Xu, Q. Zhang, J. Huang, J. Peng, H. Xu, Q. Du, Z. Gong, ACS Nano 2023, 17, 9090.
- 26T. Tran, P. Bonlokke, C. Rodriguez-Rodriguez, Z. Nosrati, P. L. Esquinas, N. Borkar, J. Plum, S. Strindberg, S. Karagiozov, T. Rades, A. Mullertz, K. Saatchi, U. O. Hafeli, J. Controlled Release 2020, 317, 375.
- 27Z. Nosrati, P. L. Esquinas, C. Rodriguez-Rodriguez, T. Thuy, A. Maharaj, K. Saatchi, U. O. Hafeli, Int. J. Pharm. 2021, 606, 120884.
- 28X. Hu, W. Fan, Z. Yu, Y. Lu, J. Qi, J. Zhang, X. Dong, W. Zhao, W. Wu, Nanoscale 2016, 8, 7024.
- 29Y. Cai, X. Ji, Y. Zhang, C. Liu, Z. Zhang, Y. Lv, X. Dong, H. He, J. Qi, Y. Lu, D. Ouyang, W. Zhao, W. Wu, Aggregate 2023, 4, e277.
- 30C. Liu, Y. Cai, Z. Zhang, Y. Lu, Q. Zhu, H. He, Z. Chen, W. Zhao, W. Wu, Acta Pharm. Sin. B 2024, 14, 3155.
- 31J. Qi, X. Hu, X. Dong, Y. Lu, H. Lu, W. Zhao, W. Wu, Adv. Drug Delivery Rev. 2019, 143, 206.
- 32Z. Zhang, C. Liu, Y. Lu, W. Zhao, Q. Zhu, H. He, Z. Chen, W. Wu, J. Nanobiotechnol. 2024, 22, 488.
- 33X. Ji, Y. Cai, X. Dong, W. Wu, W. Zhao, Nanoscale 2023, 15, d3nr01018j9290.
- 34S. Zang, H. Wu, H. Li, W. Xu, Z. Shen, W. Xu, B. Wang, Q. He, J. Cheng, Y. Fu, Sens. Actuators, B 2024, 409, 135563.
- 35F. Xia, W. Fan, S. Jiang, Y. Ma, Y. Lu, J. Qi, E. Ahmad, X. Dong, W. Zhao, W. Wu, ACS Appl. Mater. Interfaces 2017, 9, 21660.
- 36X. Yang, C. Feng, P. Wang, S. Xie, Y. Wang, H. Zhang, Z. He, S. Zhang, C. Luo, Adv. Healthcare Mater. 2024, 13, 2304485.
- 37Q. Yang, Z. Ma, H. Wang, B. Zhou, S. Zhu, Y. Zhong, J. Wang, H. Wan, A. Antaris, R. Ma, X. Zhang, J. Yang, X. Zhang, H. Sun, W. Liu, Y. Liang, H. Dai, Adv. Mater. 2017, 29, 1605497.
- 38W. Zhao, E. M. Carreira, Chem. - Eur. J. 2006, 12, 7254.
- 39Y. Liu, Y. Li, S. Koo, Y. Sun, Y. Liu, X. Liu, Y. Pan, Z. Zhang, M. Du, S. Lu, X. Qiao, J. Gao, X. Wang, Z. Deng, X. Meng, Y. Xiao, J. S. Kim, X. Hong, Chem. Rev. 2022, 122, 209.
- 40D. Yan, Z. Li, M. M. S. Lee, B. Z. Tang, D. Wang, Angew. Chem., Int. Ed. 2024, 136, 202414259.
- 41D. Ma, H. Bian, M. Gu, L. Wang, X. Chen, X. Peng, Coord. Chem. Rev. 2024, 505, 215677.
- 42Q. Yang, Z. Hu, S. Zhu, R. Ma, H. Ma, Z. Ma, H. Wan, T. Zhu, Z. Jiang, W. Liu, L. Jiao, H. Sun, Y. Liang, H. Dai, J. Am. Chem. Soc. 2018, 140, 1715.
- 43H. Yuan, W. Zhao, W. Wu, Ther. Delivery 2020, 11, 809.
- 44E. Lazaro-Ibanez, F. N. Faruqu, A. F. Saleh, A. M. Silva, J. T.-W. Wang, J. Rak, K. T. Al-Jamal, N. Dekker, ACS Nano 2021, 15, 3212.
- 45Z. Zhao, X. Zhang, H. Zhang, X. Shan, M. Bai, Z. Wang, F. Yang, H. Zhang, Q. Kan, B. Sun, J. Sun, Z. He, C. Luo, Adv. Sci. 2022, 9, 2104264.
- 46E. Ahmad, Y. Feng, J. Qi, W. Fan, Y. Ma, H. He, F. Xia, X. Dong, W. Zhao, Y. Lu, W. Wu, Nanoscale 2017, 9, 1174.
- 47J. Yang, Z. Dong, W. Liu, H. He, W. Fan, Y. Lu, W. Wu, L. Gan, J. Qi, Chin. Chem. Lett. 2020, 31, 875.
- 48X. Hu, J. Zhang, Z. Yu, Y. Xie, H. He, J. Qi, X. Dong, Y. Lu, W. Zhao, W. Wu, Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1939.
- 49H. Nakahara, M. Hagimori, T. Mukai, O. Shibata, Colloids Surf., B 2018, 164, 1.
- 50C. Wang, F. Wang, W. Zou, Y. Miao, Y. Zhu, M. Cao, B. Yu, H. Cong, Y. Shen, Acta Biomater. 2023, 164, 588.
- 51M. Cao, C. Wang, F. Wang, W. Zou, B. Yu, H. Cong, Y. Shen, Adv. Healthcare Mater. 2024, 13, 2304564.
- 52E. B. Souto, W. Mehnert, R. H. Mueller, J. Microencapsulation 2006, 23, 417.
- 53X. Liang, J. Dong, W. Zhang, Y. Mo, Y. Li, J. Bai, Sep. Purif. Technol. 2024, 330, 125534.
- 54S. Kotta, H. M. Aldawsari, S. M. Badr-Eldin, A. B. Nair, Y. T. Kamal, Pharmaceutics 2022, 14, 1636.
- 55F. V. M. Cunha, A. S. A. de Medeiros, A. M. d. S. Silva, M. C. de Morais, D. P. de Sousa, F. d. A. Oliveira, A. A. daSilvaJr, L. C. C. Nunes, J. Mol. Liq. 2023, 369, 120733.
- 56D. Wang, H. Wu, W. Q. Lim, S. Z. F. Phua, P. Xu, Q. Chen, Z. Guo, Y. Zhao, Adv. Mater. 2019, 31, 1901893.
- 57G. Chinigo, A. Gonzalez-Paredes, A. Gilardino, N. Barbero, C. Barolo, P. Gasco, A. F. Pla, S. Visentin, Spectrochim. Acta, Part A 2022, 271, 120909.
- 58S. Patra, J. Dey, A. Chakraborty, ACS Appl. Bio Mater. 2023, 6, 2785.
- 59K. Manna, C.-H. Chang, A. K. Panda, Colloids Surf., A 2012, 415, 10.
- 60S. Kollipara, R. K. Gandhi, Acta Pharm. Sin. B 2014, 4, 333.
- 61M. Falavigna, S. Brurok, M. Klitgaard, G. E. Flaten, Int. J. Pharm. 2021, 596, 120258.
- 62M. Wang, S. Xu, L.-Z. Cheong, X. Xu, Y. Bi, H. Zhang, Food Sci. Technol. 2022, 42, e115221.
- 63O. Pabois, R. M. Ziolek, C. D. Lorenz, S. Prevost, N. Mahmoudi, M. W. A. Skoda, R. J. L. Welbourn, M. Valero, R. D. Harvey, M. M. L. Grundy, P. J. Wilde, I. Grillo, Y. Gerelli, C. A. Dreiss, J. Colloid Interface Sci. 2021, 587, 522.
- 64J. Wu, Z.-H. Chen, Y. Xie, Y. Fan, Small Methods 2024, https://doi.org/10.1002/smtd.202401462.
- 65Y. Yang, Y. Chen, P. Pei, Y. Fan, S. Wang, H. Zhang, D. Zhao, B.-Z. Qian, F. Zhang, Nat. Nanotechnol. 2023, 18, 1195.
- 66H. Mu, R. Holm, A. Müllertz, Int. J. Pharm. 2013, 453, 215.
- 67A. C. Jacobsen, A. Kabedev, P. D. Sinko, J. E. Palm, C. A. S. Bergström, A. Teleki, Drug Delivery Transl. Res. 2023, 13, 1288.
- 68Y. Liu, C. Liu, S. Zhang, J. Li, H. Zheng, H. Jin, J. Xu, Nanomaterials 2021, 11, 167.
- 69H. Jin, L. Shang, Y. Xue, Y. Wan, C. Liu, Z. Fan, J. Xu, Q. Zhao, LWT 2023, 179, 114616.
- 70D. G. Fatouros, I. Walrand, B. Bergenstahl, A. Mullertz, Pharm. Res. 2009, 26, 361.
- 71G. Ji, L. Ma, H. Yao, S. Ma, X. Si, Y. Wang, X. Bao, L. Ma, F. Chen, C. Ma, L. Huang, X. Fang, W. Song, Acta Pharm. Sin. B 2020, 10, 2171.