Large-Scalable CO-Tolerant Ultrathin PtTe2 Nanosheets for Formic Acid Oxidation
Jingliang Bao
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorHaoran Sun
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorWei Yan
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorSiyu Liu
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorWei Xu
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
Search for more papers by this authorJiantao Fan
Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Changhong Zhan
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWei Liu
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorXiaoqing Huang
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Nanjun Chen
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJingliang Bao
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorHaoran Sun
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorWei Yan
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorSiyu Liu
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorWei Xu
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
Search for more papers by this authorJiantao Fan
Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Changhong Zhan
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWei Liu
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorXiaoqing Huang
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Nanjun Chen
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Developing large-scale platinum (Pt) alloys that simultaneously exhibit high formic acid oxidation reaction (FAOR) activity and robust CO tolerance remains a significant challenge for practical fuel cell applications. Here, a facile and universal in situ synthesis approach is presented to create ultrathin platinum-tellurium nanosheets on carbon support (PtTe2 NSs/C), which enables high CO tolerance and FAOR activity while achieving the massive production of PtTe2 NSs/C. Specifically, the 10-gram-scale PtTe2 NSs/C achieves exceptional specific activity and mass activity of 14.3 mA cm−2 and 3.6 A mgPt−1, respectively, which are 52.9 and 22.5 times greater than those of commercial Pt/C. Moreover, the 10-gram-scale PtTe2 NS/C exhibits significantly higher FAOR stability than pristine Pt NSs/C and commercial Pt/C. Detailed mechanism and computational investigations collectively reveal that the integration of Te into Pt lattices enhances the utilization of Pt while constructing high-density unsaturated “Pt-Te sites” on the surface of PtTe2 NSs/C, conferring high CO tolerance to PtTe2 NSs/C and thus substantially enhancing the FAOR activity. This work contributes to providing a universal method for scaling up next-generation high-performing FAOR catalysts.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202402155-sup-0001-SuppMat.docx2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Yang, L. Wang, P. Yin, J. Liu, M. Chen, Q. Yan, Z. Wang, S. Xu, S. Chu, C. Cui, H. Ju, J. Zhu, Y. Lin, J. Shui, Science 2021, 374, 459.
- 2M. A. Zeb Gul Sial, M. A. U. Din, X. Wang, Chem. Soc. Rev. 2018, 47, 6175.
- 3J. Li, Y. Xu, C. Wang, Z. Wu, Y. Shiraishi, Y. Du, Surf. Interfaces 2023, 42, 103360.
- 4C. Rice, S. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, J. Power Sources 2002, 111, 83.
- 5X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nat. Catal. 2019, 2, 259.
- 6P. C. Meenu, S. Roy, C. Chakraborty, S. Roy, Adv. Powder Technol. 2021, 32, 2663.
- 7P. C. Meenu, S. P. Datta, S. A. Singh, S. Dinda, C. Chakraborty, S. Roy, Mol. Catal. 2021, 510, 111710.
- 8J. Li, Z. Zhou, H. Xu, C. Wang, S. Hata, Z. Dai, Y. Shiraishi, Y. Du, J. Colloid Interface Sci. 2022, 611, 523.
- 9S. Park, Y. Xie, M. J. Weaver, Langmuir 2002, 18, 5792.
- 10J. Lovic, A. Tripkovic, S. Gojkovic, K. Popovic, D. Tripkovic, P. Olszewski, A. Kowal, J. Electroanal. Chem. 2005, 581, 294.
- 11W. Gao, J. Keith, J. Anton, T. Jacob, J. Am. Chem. Soc. 2010, 132, 18377.
- 12Y. Shi, R. Schimmenti, S. Zhu, K. Venkatraman, R. Chen, M. Chi, M. Shao, M. Mavrikakis, Y. Xia, J. Am. Chem. Soc. 2022, 144, 2556.
- 13W. Liang, Y. Wang, L. Zhao, W. Guo, D. Li, W. Qin, H. Wu, Y. Sun, L. Jiang, Adv. Mater. 2021, 33, 2100713.
- 14G. Chen, Y. Zhao, G. Fu, P. N. Duchesne, L. Gu, Y. Zheng, X. Weng, M. Chen, P. Zhang, C.-W. Pao, J.-F. Lee, N. Zheng, Science 2014, 344, 495.
- 15D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruña, Nat. Mater. 2013, 12, 81.
- 16J. Li, C. Wang, Y. Zhang, S. Hata, K. Zhang, C. Ye, Y. Shiraishi, Y. Du, J. Energy Chem. 2023, 85, 430.
- 17C. Zhan, L. Bu, H. Sun, X. Huang, Z. Zhu, T. Yang, H. Ma, L. Li, Y. Wang, H. Geng, W. Wang, H. Zhu, C. Pao, Q. Shao, Z. Yang, W. Liu, Z. Xie, X. Huang, Angew. Chem. 2023, 135, 202213783.
10.1002/ange.202213783 Google Scholar
- 18Y. Zhang, B. Huang, G. Luo, T. Sun, Y. Feng, Y. Wang, Y. Ma, Q. Shao, Y. Li, Z. Zhou, X. Huang, Sci. Adv. 2020, 6, eaba9731.
- 19S. Ma, H. Li, B. Hu, X. Cheng, Q. Fu, S. Yu, J. Am. Chem. Soc. 2017, 139, 5890.
- 20S. Luo, W. Chen, Y. Cheng, X. Song, Q. Wu, L. Li, X. Wu, T. Wu, M. Li, Q. Yang, Adv. Mater. 2019, 31, 1903683.
- 21X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Nat. Nanotechnol. 2011, 6, 28.
- 22Z. Wang, Q. Li, F. Besenbacher, M. Dong, Adv. Mater. 2016, 28, 10224.
- 23Z. Ma, Z. P. Cano, A. P. Yu, Z. W. Chen, G. P. Jiang, X. G. Fu, L. Yang, T. N. Wu, Z. Y. Bai, J. Lu, Angew. Chem., Int. Ed. 2020, 59, 18334.
- 24R. Srivastava, P. Mani, N. Hahn, P. Strasser, Angew. Chem., Int. Ed. 2007, 46, 8988.
- 25Q. Cheng, S. Yang, C. Fu, L. Zou, Z. Zou, Z. Jiang, J. Zhang, H. Yang, Energy Environ. Sci. 2022, 15, 278.
- 26G. K. Gao, Y. R. Wang, H. J. Zhu, Y. Chen, R. X. Yang, C. Jiang, H. Ma, Y. Q. Lan, Adv. Sci. 2020, 7, 2002190.
- 27E. Gkaniatsou, C. Chen, F. S. Cui, X. Zhu, P. Sapin, F. Nouar, C. Boissière, C. N. Markides, J. Hensen, C. Serre, Cell Rep. Phys. Sci. 2022, 3, 100730.
- 28T. Liu, J. R. Mou, Z. P. Wu, C. Lv, J. L. Huang, M. L. Liu, Adv. Funct. Mater. 2020, 30, 2003407.
- 29J. S. Liang, F. Ma, S. Hwang, X. X. Wang, J. Sokolowski, Q. Li, G. Wu, D. Su, Joule 2019, 3, 956.
- 30B. W. Zhang, Y. X. Jiang, J. Ren, X. M. Qu, G. L. Xu, S. G. Sun, Electrochim. Acta 2015, 162, 254.
- 31J.-H. Zheng, J. Zhang, G. Li, J.-M. Zhang, B.-W. Zhang, Y.-X. Jiang, S.-G. Sun, Mater. Today Energy 2022, 27, 101028.
- 32B. Sun, Y. C. Jiang, Q. L. Hong, L. Xue, F. M. Li, D. S. Li, J. Energy Chem. 2023, 85, 481.
- 33J. B. Zhang, R. G. Yin, Q. Shao, T. Zhu, X. Q. Huang, Angew. Chem. 2019, 131, 5665.
10.1002/ange.201900167 Google Scholar
- 34Y. Zhu, L. Bu, Q. Shao, X. Huang, ACS Catal. 2020, 10, 3455.
- 35R. Wang, C. Wang, W.-B. Cai, Y. Ding, Adv. Mater. 2010, 22, 1845.
- 36Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, Angew. Chem., Int. Ed. 2005, 44, 5694.