Fabrication of a Mechanically Robust Solid-Electrolyte Interphase on Sodium-Metal Anodes by Anion Modulation for Ambient Sodium-Air Batteries
Xiaofeng Lei
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
School of Materials Science and Engineering, Linyi University, Linyi, 276000 China
Search for more papers by this authorMenglin He
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Pingli Wu
Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorChao Ma
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorXu Liu
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorChongyan Yao
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorWenfeng Cui
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorQingxu Zhang
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCaicai Li
Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056 China
Search for more papers by this authorCorresponding Author
Huiqiao Li
Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056 China
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xizheng Liu
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiaofeng Lei
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
School of Materials Science and Engineering, Linyi University, Linyi, 276000 China
Search for more papers by this authorMenglin He
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Pingli Wu
Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorChao Ma
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorXu Liu
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorChongyan Yao
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorWenfeng Cui
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorQingxu Zhang
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCaicai Li
Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056 China
Search for more papers by this authorCorresponding Author
Huiqiao Li
Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056 China
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xizheng Liu
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The stabilization of metallic-Na anodes by the fabrication of a mechanically stable solid-electrolyte interphase (SEI) can enable the construction of stable Na-air batteries (NABs) that can be used as practicable energy-storage devices in ambient air. This study reports in situ fabrication of air-stable Na anodes protected by SEI films for stable NABs. The regulation of anions in the electrolyte generated hierarchically layered SEI on Na anodes; the sequential deposition of inorganic salts and organic components is modulated by controlling the competitive reduction of salt and solvent molecules on the Na surface. Metallic-Na anodes with hierarchical SEI comprising an outer salt-rich and inner organic-component-rich layer showed highly reversible stripping/plating. The high stability of the SEI layer in ambient air can be attributed to synergism between its hydrophilic inorganic and hydrophobic organic components. NABs with hierarchical-SEI-modified Na anodes showed stable cycling for >1900 h in ambient air. This study can guide the design of stable metallic anodes and facilitate the future development of diverse Na-based rechargeable batteries.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401930-sup-0001-SuppMat.docx3.3 MB | Supporting Information |
smtd202401930-sup-0002-MovieS1.mp48.7 MB | Supplemental Movie 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Van Noorden, Nature 2014, 507, 26.
- 2R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nat. Energy 2018, 3, 267.
- 3P. Albertus, S. Babinec, S. Litzelman, A. Newman, Nat. Energy 2017, 3, 16.
- 4M. Lee, J. Hong, J. Lopez, Y. Sun, D. Feng, K. Lim, W. C. Chueh, M. F. Toney, Y. Cui, Z. Bao, Nat. Energy 2017, 2, 861.
- 5B. Lee, E. Paek, D. Mitlin, S. W. Lee, Chem. Rev. 2019, 119, 5416.
- 6P. Hartmann, C. L. Bender, M. Vracar, A. K. Durr, A. Garsuch, J. Janek, P. Adelhelm, Nat. Mater. 2013, 12, 228.
- 7X. F. Xu, D. Zhou, X. Y. Qin, K. Lin, F. Y. Kang, B. H. Li, D. Shanmukaraj, T. Rojo, M. Armand, G. X. Wang, Nat. Commun. 2018, 9, 3870.
- 8H. C. Gao, S. Xin, L. G. Xue, J. B. Goodenough, Chem 2018, 4, 833.
- 9Q. Sun, L. Dai, T. Luo, L. Wang, F. Liang, S. Liu, Carbon Energy 2023, 5, 276.
- 10L. Jiang, X. Luo, D.-W. Wang, Carbon Energy 2023, 5, 284.
- 11X. Chen, X. Shen, B. Li, H. J. Peng, X. B. Cheng, B. Q. Li, X. Q. Zhang, J. Q. Huang, Q. Zhang, Angew. Chem., Int. Ed. 2018, 57, 734.
- 12X. Chen, X. Shen, T. Z. Hou, R. Zhang, H. J. Peng, Q. Zhang, Chem 2020, 6, 2242.
- 13X. Z. Liu, X. F. Lei, Y. G. Wang, Y. Ding, ACS Cent. Sci. 2021, 7, 335.
- 14E. Peled, J. Electrochem. Soc. 1979, 126, 2047.
- 15E. Peled, S. Menkin, J. Electrochem. Soc. 2017, 164, A1703.
- 16Z. W. Zhang, Y. Z. Li, R. Xu, W. J. Zhou, Y. B. Li, S. T. Oyakhire, Y. C. Wu, J. W. Xu, H. S. Wang, Z. Yu, D. T. Boyle, W. Huang, Y. S. Ye, H. Chen, J. Y. Wan, Z. N. Bao, W. Chiu, Y. Cui, Science 2022, 375, 66.
- 17C. Y. Bao, B. Wang, P. Liu, H. Wu, Y. Zhou, D. L. Wang, H. K. Liu, S. X. Dou, Adv. Funct. Mater. 2020, 30, 2004891.
- 18E. Peled, D. Golodnitsky, G. Ardel, J. Electrochem. Soc. 1997, 144, L208.
- 19D. Aurbach, Y. Ein-Ely, A. Zaban, J. Electrochem. Soc. 1994, 141, L1.
- 20D. Aurbach, A. Zaban, J. Electroanal. Chem. 1994, 367, 15.
- 21Q. Zhao, S. Stalin, L. A. Archer, Joule 2021, 5, 1119.
- 22Z. W. Seh, J. Sun, Y. M. Sun, Y. Cui, ACS Cent. Sci. 2015, 1, 449.
- 23L. Lutz, D. Alves Dalla Corte, M. X. Tang, E. Salager, M. Deschamps, A. Grimaud, L. Johnson, P. G. Bruce, J. M. Tarascon, Chem. Mater. 2017, 29, 6066.
- 24X. Y. Shan, Y. Zhong, L. J. Zhang, Y. Q. Zhang, X. H. Xia, X. L. Wang, J. P. Tu, J. Phys. Chem. C 2021, 125, 19060.
- 25Y. F. Zhou, M. Su, X. F. Yu, Y. Y. Zhang, J. G. Wang, X. D. Ren, R. G. Cao, W. Xu, D. R. Baer, Y. G. Du, O. Borodin, Y. T. Wang, X. L. Wang, K. Xu, Z. J. Xu, C. M. Wang, Z. H. Zhu, Nat. Nanotechnol. 2020, 15, 224.
- 26Y. Ding, X. L. Guo, Y. M. Qian, L. G. Xue, A. Dolocan, G. H. Yu, Adv. Mater. 2020, 32, 2002577.
- 27S. Q. Shi, P. Lu, Z. Y. Liu, Y. Qi, L. G. Hector Jr., H. Li, S. J. Harris, J. Am. Chem. Soc. 2012, 134, 15476.
- 28J. H. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Nat. Energy 2018, 3, 22.
- 29Y. Yamada, J. H. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 2019, 4, 269.
- 30A. Bouibes, N. Takenaka, S. Saha, M. Nagaoka, J. Phys. Chem. Lett. 2019, 10, 5949.
- 31R. Mogensen, D. Brandell, R. Younesi, ACS Energy Lett. 2016, 1, 1173.
- 32K. Schroder, J. Alvarado, T. A. Yersak, J. C. Li, N. Dudney, L. J. Webb, Y. S. Meng, K. J. Stevenson, Chem. Mater. 2015, 27, 5531.
- 33K. Ushirogata, K. Sodeyama, Z. Futera, Y. Tateyama, Y. Okuno, J. Electrochem. Soc. 2015, 162, A2670.
- 34N. Takenaka, T. Fujie, A. Bouibes, Y. Yamada, A. Yamada, M. Nagaoka, J. Phys. Chem. C 2018, 122, 2564.
- 35H. S. Wang, Y. Z. Li, Y. B. Li, Y. Y. Liu, D. C. Lin, C. Zhu, G. X. Chen, A. K. Yang, K. Yan, H. Chen, Y. Y. Zhu, J. Li, J. Xie, J. W. Xu, Z. W. Zhang, R. Vilá, A. Pei, K. C. Wang, Y. Cui, Nano Lett. 2019, 19, 1326.
- 36S. Bertolini, P. B. Balbuena, J. Phys. Chem. C 2018, 122, 10783.
- 37F. A. Soto, Y. G. Ma, J. M. Martinez de la Hoz, J. M. Seminario, P. B. Balbuena, Chem. Mater. 2015, 27, 7990.
- 38C. Xia, R. Black, R. Fernandes, B. Adams, L. F. Nazar, Nat. Chem. 2015, 7, 496.
- 39C. L. Bender, D. Schroder, R. Pinedo, P. Adelhelm, J. Janek, Angew. Chem., Int. Ed. 2016, 55, 4640.
- 40J. L. Ma, F. L. Meng, Y. Yu, D. P. Liu, J. M. Yan, Y. Zhang, X. B. Zhang, Q. Jiang, Nat. Chem. 2019, 11, 64.
- 41X. X. Bi, R. Y. Wang, Y. F. Yuan, D. Z. Zhang, T. Zhang, L. Ma, T. P. Wu, R. Shahbazian-Yassar, K. Amine, J. Lu, Nano Lett. 2020, 20, 4681.
- 42Q. N. Liu, Y. F. Tang, H. M. Sun, T. T. Yang, Y. Sun, C. C. Du, P. Jia, H. J. Ye, J. Z. Chen, Q. M. Peng, T. D. Shen, L. Q. Zhang, J. Y. Huang, ACS Nano 2020, 14, 13232.
- 43X. F. Lei, X. Z. Liu, W. Q. Ma, Z. Cao, Y. G. Wang, Y. Ding, Angew. Chem., Int. Ed. 2018, 57, 16131.
- 44X. F. Lei, S. S. Lu, W. Q. Ma, Z. Cao, R. E. Zhang, X. Z. Liu, Y. Ding, Electrochim. Acta 2018, 280, 308.
- 45W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 1996, 118, 11225.
- 46W. L. Jorgensen, J. Tirado-Rives, Proc. Natl. Acad. Sci. USA 2005, 102, 6665.
- 47L. S. Dodda, J. Z. Vilseck, J. Tirado-Rives, W. L. Jorgensen, J. Phys. Chem. B 2017, 121, 3864.
- 48L. S. Dodda, I. Cabeza de Vaca, J. Tirado-Rives, W. L. Jorgensen, Nucleic Acids Res. 2017, 45, W331.
- 49S. V. Sambasivarao, O. Acevedo, J. Chem. Theory Comput. 2009, 5, 1038.
- 50B. Doherty, X. Zhong, S. Gathiaka, B. Li, O. Acevedo, J. Chem. Theory Comput. 2017, 13, 6131.
- 51D. Beglov, B. Roux, J. Chem. Phys. 1994, 100, 9050.