Dual-Induced Directed Deposition Mechanism Based on Anionic Surfactants Enables Long Cycle Aqueous Zinc Ion Batteries
Bing Wu
Emergency Research Institute, Chinese Institute of Coal Science (CICS), Beijing, 100013 China
Search for more papers by this authorCorresponding Author
Tiantian Lu
Shanxi Energy Internet Research Institute, Taiyuan, Shanxi, 030024 China
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiang Bai
Shanxi Energy Internet Research Institute, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorJiahui Zhang
Shanxi Energy Internet Research Institute, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorXinyue Chang
Energy Internet Key Laboratory of Shanxi Province, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorLifeng Hou
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorYinghui Wei
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorCorresponding Author
Qian Wang
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jiangfeng Ni
School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorBing Wu
Emergency Research Institute, Chinese Institute of Coal Science (CICS), Beijing, 100013 China
Search for more papers by this authorCorresponding Author
Tiantian Lu
Shanxi Energy Internet Research Institute, Taiyuan, Shanxi, 030024 China
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiang Bai
Shanxi Energy Internet Research Institute, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorJiahui Zhang
Shanxi Energy Internet Research Institute, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorXinyue Chang
Energy Internet Key Laboratory of Shanxi Province, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorLifeng Hou
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorYinghui Wei
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 China
Search for more papers by this authorCorresponding Author
Qian Wang
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jiangfeng Ni
School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Aqueous zinc-ion battery has low cost, and environmental friendliness, emerging as a promising candidate for next-generation battery systems. However, it still suffers from a limited cycling life, caused by dendritic Zn growth and severe side reactions. Recent research highlights that the Zn (002) crystal plane exhibits superior anti-corrosive properties and a horizontal growth pattern. However, achieving uniform deposition on the Zn (002) plane remains a formidable challenge. Here, preferential rapid growth of the Zn (002) plane is manipulated via the dual-induced deposition effect of anionic surfactant (2-acrylamido-2-methylpropanesulfonic acid, AMPS), achieving Zn metal anode with ultralong cycle life. AMPS can preferentially adsorb on the Zn (100) and Zn (101) crystal planes, exposing the Zn (002) plane as a nucleation site for Zn2+ ions, while the abundant presence of amide groups in AMPS can form fast ion channels, inducing rapid and uniform Zn deposition. Thus, even using 30 µm Zn foils, the symmetric cells can maintain a stable plating-stripping process over 5000 h, and Zn.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401838-sup-0001-SuppMat.docx4.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) M. Armand, J. M. Tarascon, Nature 2020, 451, 652;
10.1038/451652a Google Scholarb) J. Hao, X. Li, X. Zeng, D. Li, J. Mao, Z. Guo, Energy Environ. Sci. 2008, 13, 3917;10.1039/D0EE02162H Google Scholarc) S. Chu, A. Majumdar, Nature 2012, 488, 294; d) M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561; e) Q. Wang, T. Lu, Y. Liu, J. Dai, L. Guan, L. Hou, H. Du, H. Wei, X. Liu, X. Han, Z. Ye, D. Zhang, Y. Wei, H. Zhou, Energy Storage Mater. 2023, 55, 782.
- 2a) L. Yuan, J. Hao, C. C. Kao, C. Wu, H. K. Liu, S. X. Dou, S. Z. Qiao, Energy Environ. Sci. 2021, 14, 5669; b) J. Li, J. Fleetwood, W. B. Hawley, W. Kays, Chem. Rev. 2021, 122, 903.
- 3a) N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng, J. Chen, Chem. Soc. Rev. 2020, 49, 4203; b) X. Nie, L. Miao, W. Yuan, G. Ma, S. Di, Y. Wang, S. Shen, N. Zhang, Adv. Funct. Mater. 2022, 32, 2203905; c) Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Adv. Mater. 2021, 34, 2106409.
- 4a) H. Jin, S. Dai, K. Xie, Y. Luo, K. Liu, Z. Zhu, L. Huang, L. Huang, J. Zhou, Small 2022, 18, 2106441; b) P. Ruan, S. Liang, B. Lu, H. J. Fan, J. Zhou, Angew. Chem., Int. Ed. 2022, 61, 202200598; c) F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Nat. Mater. 2018, 17, 543; d) L. Hu, P. Xiao, L. Xue, H. Li, T. Zhai, Energy Chem. 2021, 3, 100052; e) H. Wang, R. Tan, Z. Yang, Y. Feng, X. Duan, J. Ma, Adv. Energy Mater. 2020, 11, 2000962; f) Y. Huang, H. Yan, W. Liu, F. Kang, Angew. Chem., Int. Ed. 2024, 63, 202409642.
- 5a) Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen, P. M. Ajayan, Adv. Energy Mater. 2020, 10, 2001599; b) J. Zhu, Z. Bie, X. Cai, Z. Jiao, Z. Wang, J. Tao, W. Song, H. J. Fan, Adv. Mater. 2022, 34, 2207209; c) V. Verma, S. Kumar, W. Manalastas, M. Srinivasan, ACS Energy Lett. 2021, 6, 1773; d) Z. Yang, W. Li, Q. Zhang, C. Xie, H. Ji, Y. Tang, Y. Li, H. Wang, Materials Today Energy 2022, 28, 101076; e) Y. Huang, R. Guo, Z. Li, J. Zhang, W. Liu, F. Kang, Adv. Sci. 2024, 11, c2407201.
- 6a) C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang, A. Hu, Z. Liu, X. Chen, Adv. Mater. 2021, 33, 2100445; b) L. Tao, K. Guan, R. Yang, Z. Guo, L. Wang, L. Xu, H. Wan, J. Zhang, H. Wang, L. Hu, P. J. Dyson, M. K. Nazeeruddin, H. Wang, Energy Storage Mater. 2023, 63, 102981; c) Z. Liu, R. Wang, Y. Gao, S. Zhang, J. Wan, J. Mao, L. Zhang, H. Li, J. Hao, G. Li, L. Zhang, C. Zhang, Adv. Funct. Mater. 2023, 1, 202308463; d) L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo, J. Liu, W. Liang, C. Zhi, Adv. Energy Mater. 2018, 8, 1801090; e) W. Du, E. H. Ang, Y. Yang, Y. Zhang, M. Ye, C. C. Li, Energy Environ. Sci. 2020, 13, 3330.
- 7H. He, H. Tong, X. Song, X. Song, J. Liu, J. Mater. Chem. A 2020, 8, 7836.
- 8Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang, M. Ye, L. Chen, J. Zhao, C. C. Li, Adv. Mater. 2021, 33, 2007388.
- 9H. Qin, W. Kuang, D. Huang, X. Zhang, J. Liu, L. Yi, F. Shen, Z. Wei, Y. Huang, J. Xu, H. He, J. Mater. Chem. A 2022, 10, 17440.
- 10H. Qin, W. Kuang, N. Hu, X. Zhong, D. Huang, F. Shen, Z. Wei, Y. Huang, J. Xu, H. He, Adv. Funct. Mater. 2022, 32, 2206695.
- 11L. Miao, R. Wang, S. Di, Z. Qian, L. Zhang, W. Xin, M. Liu, Z. Zhu, S. Chu, Y. Du, N. Zhang, ACS Nano 2022, 16, 9667.
- 12L. Cao, D. Li, E. Hu, J. Xu, T. Deng, L. Ma, Y. Wang, X. Q. Yang, C. Wang, J. Am. Chem. Soc. 2020, 142, 21404.
- 13a) S. D. Pu, C. Gong, Y. T. Tang, Z. Ning, J. Liu, S. Zhang, Y. Yuan, D. Melvin, S. Yang, L. Pi, J. J. Marie, B. Hu, M. Jenkins, Z. Li, B. Liu, S. C. E. Tsang, T. J. Marrow, R. C. Reed, X. Gao, P. G. Bruce, A. W. Robertson, Adv. Mater. 2022, 34, 2202552; b) Y. Hao, D. Feng, L. Hou, T. Li, Y. Jiao, P. Wu, Adv. Sci. (Weinh) 2022, 9, 2104832; c) Y. Lin, Z. Mai, H. Liang, Y. Li, G. Yang, C. Wang, Energy Environ. Sci. 2023, 16, 687; d) Q. Li, Y. Zhao, F. Mo, D. Wang, Q. Yang, Z. Huang, G. Liang, A. Chen, C. Zhi, EcoMat 2020, 2, e12035; e) T. Long, Q. Y. Zhao, G. Y. Yin, P. X. Xie, S. Liu, X. Ma, Q. Wu, B. Y. Lu, Z. Dai, X. X. Zeng, Adv. Funct. Mater. 2024, 34, 202315539.
- 14X. Song, L. Bai, C. Wang, D. Wang, K. Xu, J. Dong, Y. Li, Q. Shen, J. Yang, ACS Nano 2023, 17, 15113.
- 15J. Zheng, Y. Deng, J. Yin, T. Tang, R. Garcia-Mendez, Q. Zhao, L. A. Archer, Adv. Mater. 2021, 34, 2106867cc.
- 16Y. Su, B. Chen, Y. Sun, Z. Xue, Y. Zou, D. Yang, L. Sun, X. Yang, C. Li, Y. Yang, X. Song, W. Guo, S. Dou, D. Chao, Z. Liu, J. Sun, Adv. Mater. 2023, 35, 2301410.
- 17Y. Huang, Y. Zhuang, L. Guo, C. Lei, Y. Jiang, Z. Liu, Y. Zhao, K. Xing, X. Wu, S. Luo, G. Chen, Z. Liu, Z. Hu, Small 2023, 20, 202306211.
- 18a) A. Naveed, H. Yang, Y. Shao, J. Yang, N. Yanna, J. Liu, S. Shi, L. Zhang, A. Ye, B. He, J. Wang, Adv. Mater. 2019, 31, 1900668; b) J. Huang, Z. Fu, C. F. Sun, W. Deng, Molecules 2023, 28, 4177; c) F. Zhao, Z. Jing, X. Guo, J. Li, H. Dong, Y. Tan, L. Liu, Y. Zhou, R. Owen, P. R. Shearing, D. J. L. Brett, G. He, I. P. Parkin, Energy Storage Mater. 2022, 53, 638; d) T. T. Su, K. Wang, C. Y. Shao, J. B. Le, W. F. Ren, R. C. Sun, ACS Appl. Mater. Interfaces 2023, 15, 20040.
- 19a) J. Zheng, Q. Zhao, T. Tang, J. Yin, C. D. Quilty, G. D. Renderos, X. Liu, Y. Deng, L. Wang, D. C. Bock, C. Jaye, D. Zhang, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok, L. A. Archer, Science 2019, 366, 645; b) V. Jabbari, T. Foroozan, R. Shahbazian-Yassar, Adv. Energy Sustainab. Res. 2021, 2, 2000082; c) M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu, T. Zhang, X. Cao, M. Long, B. Lu, A. Pan, G. Fang, J. Zhou, S. Liang, Adv. Mater. 2021, 33, 2100187c.
- 20Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan, D. Wang, Z. Huang, X. Li, J. Fan, C. Zhi, Adv. Mater. 2019, 31, 1903778.
- 21Q. Gou, H. Luo, Q. Zhang, J. Deng, R. Zhao, O. Odunmbaku, L. Wang, L. Li, Y. Zheng, J. Li, D. Chao, M. Li, Small 2023, 19, 2207502.
- 22a) M. Qiu, P. Sun, A. Qin, G. Cui, W. Mai, Energy Storage Mater. 2022, 49, 463; b) C. Meng, W. He, Z. Kong, Z. Liang, H. Zhao, Y. Lei, Y. Wu, X. Hao, Chem. Eng. J. 2022, 450, 138265.
- 23A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nano Lett. 2017, 17, 1132.
- 24S. Khorsand, K. Raeissi, M. A. Golozar, J. Electrochem. Soc. 2011, 158, D377.
- 25a) Z. Dai, K. Rajendran, J. Cao, D. Zhang, R. Chanajaree, C. Yang, P. Tan, X. Zhang, J. Qin, Energy Fuels 2023, 37, 13536; b) G. Wang, Q. Dou, P. Xiong, Q. Liu, D. Min, H. S. Park, Chem. Eng. J. 2023, 457, 141250; c) Y. X. Song, J. Wang, X. B. Zhong, K. Wang, Y. H. Zhang, H. T. Liu, L. X. Zhang, J. F. Liang, R. Wen, Energy Storage Mater. 2023, 58, 85; d) W. Zhou, M. Chen, Y. Quan, J. Ding, H. Cheng, X. Han, J. Chen, B. Liu, S. Shi, X. Xu, Chem. Eng. J. 2023, 457, 141328; e) J. Chen, W. Zhou, Y. Quan, B. Liu, M. Yang, M. Chen, X. Han, X. Xu, P. Zhang, S. Shi, Energy Storage Mater. 2022, 53, 629; f) C. Chen, L. Li, Z. Long, Q. Liang, Chem. Commun. 2023, 59, 13363; g) H. Liu, Z. Xin, B. Cao, Z. Xu, B. Xu, Q. Zhu, J. L. Yang, B. Zhang, H. J. Fan, Adv. Funct. Mater. 2023, 34, 202309840; h) X. Zhao, Y. Wang, C. Huang, Y. Gao, M. Huang, Y. Ding, X. Wang, Z. Si, D. Zhou, F. Kang, Angew. Chem., Int. Ed. 2023, 62, 202312193; i) Y. Zhong, Z. Cheng, H. Zhang, J. Li, D. Liu, Y. Liao, J. Meng, Y. Shen, Y. Huang, Nano Energy 2022, 98, 107220; j) H. Ying, P. Huang, Z. Zhang, S. Zhang, Q. Han, Z. Zhang, J. Wang, W. Q. Han, Nano-Micro Lett. 2022, 14, 180; k) D. Wang, D. Lv, H. Liu, S. Zhang, C. Wang, C. Wang, J. Yang, Y. Qian, Angew. Chem., Int. Ed. 2022, 61, 2212839; l) Y. Wang, N. Li, H. Liu, J. Shi, Y. Li, X. Wu, Z. Wang, C. Huang, K. Chen, D. Zhang, T. Wu, P. Li, C. Liu, L. Mi, Adv. Fiber Mater. 2023, 5, 2002; m) X. Zhang, T. Liao, T. Long, Y. K. Cao, X. X. Zeng, Q. Deng, B. Liu, X. W. Wu, Y. P. Wu, ACS Appl. Mater. Interfaces 2023, 15, 32496; n) Y. Zhang, X. Zheng, K. Wu, Y. Zhang, G. Xu, M. Wu, H. K. Liu, S. X. Dou, C. Wu, Nano Lett. 2022, 22, 8574; o) J. Yan, M. Ye, Y. Zhang, Y. Tang, C. C. Li, Chem. Eng. J. 2022, 432, 134227.
- 26a) X. Wang, A. V. Kirianova, X. Xu, Y. Liu, O. O. Kapitanova, M. O. Gallyamov, Nanotechnology 2021, 33, 125401; b) Y. Wang, Y. Chen, W. Liu, X. Ni, P. Qing, Q. Zhao, W. Wei, X. Ji, J. Ma, L. Chen, J. Mater. Chem. A 2021, 9, 8452; c) Q. Lu, C. Liu, Y. Du, X. Wang, L. Ding, A. Omar, D. Mikhailova, ACS Appl. Mater. Interfaces 2021, 13, 16869.