Enabling Charge Trapping with Quasi-Magnetization through Transition Metal Ion-Chelated Mesoporous Silica Particles for Wearable Antibacterial Self-Powering Sensors
Seunghye Han
Department of Polymer Science & Engineering, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorJungchul Park
Korea Institute of Ceramic Engineering and Technology (KICET), Chungbuk, 28160 Republic of Korea
Search for more papers by this authorJingzhe Sun
Human-Tech Convergence Program, Department of Clothing & Textiles, Hanyang University, Seoul, 04763 Republic of Korea
Search for more papers by this authorBingqi Ren
Department of Polymer Science & Engineering, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorJiwoo Lee
Department of Polymer Science & Engineering, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorJihyun Bae
Human-Tech Convergence Program, Department of Clothing & Textiles, Hanyang University, Seoul, 04763 Republic of Korea
Search for more papers by this authorCorresponding Author
Jeong Ho Chang
Korea Institute of Ceramic Engineering and Technology (KICET), Chungbuk, 28160 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jong-Jin Park
Department of Polymer Science & Engineering, Chonnam National University, Gwangju, 61186 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorSeunghye Han
Department of Polymer Science & Engineering, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorJungchul Park
Korea Institute of Ceramic Engineering and Technology (KICET), Chungbuk, 28160 Republic of Korea
Search for more papers by this authorJingzhe Sun
Human-Tech Convergence Program, Department of Clothing & Textiles, Hanyang University, Seoul, 04763 Republic of Korea
Search for more papers by this authorBingqi Ren
Department of Polymer Science & Engineering, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorJiwoo Lee
Department of Polymer Science & Engineering, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorJihyun Bae
Human-Tech Convergence Program, Department of Clothing & Textiles, Hanyang University, Seoul, 04763 Republic of Korea
Search for more papers by this authorCorresponding Author
Jeong Ho Chang
Korea Institute of Ceramic Engineering and Technology (KICET), Chungbuk, 28160 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jong-Jin Park
Department of Polymer Science & Engineering, Chonnam National University, Gwangju, 61186 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Wearable self-powering sensors based on triboelectric nanogenerators (TENGs) emerging as a promising strategy for a wide range of applications, such as self-powering and energy-harvesting systems, are widely used in healthcare and displacement current are utilized as the driving force. Although the TENG theory is rooted in the displacement current equation proposed by Maxwell, the magnetic field created by this current is often overlooked in TENG research. In this work, an effective charge-trapping method based on the magnetization current induced by transition metal ion chelation is reported. The experimental results, along with a theoretical analysis of the Maxwell equation and a discussion of the charge-trapping mechanism, demonstrate that magnetic materials provide enhanced charge-trapping performance. Transition metal ions chelated to mesoporous silica particles (MSPs) can slightly assign weak paramagnetic properties owing to the formation of ligand complexes. As a result, they can generate a feeble quasi-magnetization current during the TENG cycle, which enhances the surface charge density of the Co-MSPs-based polyvinyl alcohol TENG (PVA-TENG) by 68%. In addition, it is confirmed that the MSPs chelated with transition metal ions exhibit antibacterial properties, thereby providing promising synergistic effects from the perspective of application as a wearable TENG-based antibacterial sensor system.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smtd202401831-sup-0001-SuppMat.docx6.2 MB | Supporting Information |
smtd202401831-sup-0002-MovieS1.mp4913 KB | Supplemental Movie 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Ryu, H. J. Yoon, S. W. Kim, Adv. Mater. 2019, 31, 1802898.
- 2L. L. Gaines, J. B. Dunn, Lithium-Ion Batteries Advances and Applications, Elsevier, Amsterdam, The Netherlands 2014.
- 3Y. Jie, X. Jia, J. Zou, Y. Chen, N. Wang, Z. L. Wang, X. Cao, Adv. Energy Mater. 2018, 8, 1.
- 4J. M. Wu, C. K. Chang, Y. T. Chang, Nano Energy 2016, 19, 39.
- 5Y. Cho, Y. Son, J. Ahn, H. Lim, S. Ahn, J. Lee, P. K. Bae, I.-D. Kim, ACS Nano 2022, 16, 19451.
- 6X. Cheng, W. Tang, Y. Song, H. Chen, H. Zhang, Z. L. Wang, Nano Energy 2019, 61, 517.
- 7Z. L. Wang, Adv. Energy Mater. 2020, 10, 1.
- 8Y. Wang, Y. Yang, Z. L. Wang, npj Flex. Electron. 2017, 1, 10.
- 9X. S. Zhang, M. Di Han, B. Meng, H. X. Zhang, Nano Energy 2015, 11, 304.
- 10S. H. Shin, Y. E. Bae, H. K. Moon, J. Kim, S. H. Choi, Y. Kim, H. J. Yoon, M. H. Lee, J. Nah, ACS Nano 2017, 11, 6131.
- 11I. W. Tcho, W. G. Kim, S. B. Jeon, S. J. Park, B. J. Lee, H. K. Bae, D. Kim, Y. K. Choi, Nano Energy 2017, 42, 34.
- 12Y. S. Choi, S. W. Kim, S. Kar-Narayan, Adv. Energy Mater. 2021, 11, 1.
- 13D. W. Kim, J. H. Lee, I. You, J. K. Kim, U. Jeong, Nano Energy 2018, 50, 192.
- 14X. Cui, Y. Zhang, G. Hu, L. Zhang, Y. Zhang, Nano Energy 2020, 70, 104513.
- 15X. Cui, Y. Zhang, Nano Sel. 2020, 1, 461.
- 16N. Cui, L. Gu, Y. Lei, J. Liu, Y. Qin, X. Ma, Y. Hao, Z. L. Wang, ACS Nano 2016, 10, 6131.
- 17J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi, C. Hu, ACS Appl. Mater. Interfaces 2016, 8, 736.
- 18W. Seung, H. J. Yoon, T. Y. Kim, H. Ryu, J. Kim, J. H. Lee, J. H. Lee, S. Kim, Y. K. Park, Y. J. Park, S. W. Kim, Adv. Energy Mater. 2017, 7, 1600988.
- 19J. Chun, J. W. Kim, W. S. Jung, C. Y. Kang, S. W. Kim, Z. L. Wang, J. M. Baik, Energy Environ. Sci. 2015, 8, 3006.
- 20X. Cao, M. Zhang, J. Huang, T. Jiang, J. Zou, N. Wang, Z. L. Wang, Adv. Mater. 2018, 30, 1.
- 21Z. L. Wang, Mater. Today 2017, 20, 74.
- 22J. H. Van Vleck, Rev. Mod. Phys. 1945, 17, 27.
- 23S. Lin, L. Zhu, Z. Tang, Z. L. Wang, Nat. Commun. 2022, 13, 5230.
- 24L. Liu, J. Li, W. Ou-Yang, Z. Guan, X. Hu, M. Xie, Z. Tian, Nano Energy 2022, 96, 107139.
- 25Y. Li, G. Li, P. Zhang, H. Zhang, C. Ren, X. Shi, H. Cai, Y. Zhang, Y. Wang, Z. Guo, H. Li, G. Ding, H. Cai, Z. Yang, C. Zhang, Z. L. Wang, Adv. Energy Mater. 2021, 11, 1.
- 26W. M. Saslow, Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 184434.
10.1103/PhysRevB.76.184434 Google Scholar
- 27W. P. Healy, Proc. R. Soc. Lond. Ser. A 1978, 358, 367.
10.1098/rspa.1978.0017 Google Scholar
- 28C. Kittel, Phys. Rev. 1946, 70, 965.
- 29J. Zhao, G. Zhen, G. Liu, T. Bu, W. Liu, X. Fu, P. Zhang, C. Zhang, Z. L. Wang, Nano Energy 2019, 61, 111.
- 30H. Shao, Z. Wen, P. Cheng, N. Sun, Q. Shen, C. Zhou, M. Peng, Y. Yang, X. Xie, X. Sun, Nano Energy 2017, 39, 608.
- 31S. Xu, X. Fu, G. Liu, T. Tong, T. Bu, Z. L. Wang, C. Zhang, iScience 2021, 24, 102318.
- 32Z. L. Wang, T. Jiang, L. Xu, Nano Energy 2017, 39, 9.
- 33R. Hinchet, W. Seung, S. W. Kim, ChemSusChem 2015, 8, 2327.
- 34K. Parida, J. Xiong, X. Zhou, P. S. Lee, Nano Energy 2019, 59, 237.
- 35X. Peng, K. Dong, C. Ye, Y. Jiang, S. Zhai, R. Cheng, D. Liu, X. Gao, J. Wang, Z. L. Wang, Sci. Adv. 2020, 6, eaba9624.
- 36Z. L. Wang, L. Lin, J. Chen, S. Niu, Y. Zi, Self-powered Sensing for Vibration and Biomedical Monitoring. Triboelectric Nanogenerators, 2016, 431454, https://doi.org/10.1007/978-3-319-40039-6_15.
10.1007/978?3?319?40039?6_15 Google Scholar
- 37R. Wang, L. Mu, Y. Bao, H. Lin, T. Ji, Y. Shi, J. Zhu, W. Wu, Adv. Mater. 2020, 32, 1.
- 38Y. Wang, L. Zhang, A. Lu, J. Mater. Chem. A 2020, 8, 13935.
- 39D. Yang, Y. Ni, X. Kong, S. Li, X. Chen, L. Zhang, Z. L. Wang, ACS Nano 2021, 15, 14653.
- 40Y. Jie, N. Wang, X. Cao, Y. Xu, T. Li, X. Zhang, Z. L. Wang, ACS Nano 2015, 9, 8376.
- 41L. Wang, X. Yang, W. A. Daoud, Nano Energy 2019, 55, 433.
- 42T. Takada, Y. Hayase, Y. Tanaka, T. Okamoto, 2007 Annual Report – Conf. on Electrical Insulation and Dielectric Phenomena, Vancouver, BC, Canada 2007.
- 43T. Takada, Y. Hayase, Y. Tanaka, T. Okamoto, 2007 Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, IEEE, Vancouver, BC, Canada 2007, 417–420.
10.1109/CEIDP.2007.4451547 Google Scholar
- 44D. R. Eaton, J. Am. Chem. Soc. 1965, 87, 3097.
- 45C. J. Gorter, Rev. Mod. Phys. 1953, 25, 332.
- 46L. Mercier, T. J. Pinnavaia, Adv. Mater. 1997, 9, 500.
- 47S. Cha, Y. Cho, J. G. Kim, H. Choi, D. Ahn, J. Sun, D. soo Kang, C. Pak, J. J. Park, Small Methods 2022, 6, 2101545.
- 48R. Wang, L. Mu, Y. Bao, H. Lin, T. Ji, Y. Shi, J. Zhu, W. Wu, Adv. Mater. 2020, 32, 1.
- 49Y. Lee, J. Park, S. Cho, Y. E. Shin, H. Lee, J. Kim, J. Myoung, S. Cho, S. Kang, C. Baig, H. Ko, ACS Nano 2018, 12, 4045.
- 50A. Perez-Gavilan, J. V. de Castro, A. Arana, S. Merino, A. Retolaza, S. A. Alves, A. Francone, N. Kehagias, C. M. Sotomayor-Torres, D. Cocina, R. Mortera, S. Crapanzano, C. J. Pelegrín, M. C. Garrigos, A. Jiménez, B. Galindo, M. C. Araque, D. Dykeman, N. M. Neves, J. M. Marimón, Sci. Rep. 2021, 11, 6675.
- 51G. Wang, H. Feng, L. Hu, W. Jin, Q. Hao, A. Gao, X. Peng, W. Li, K. Y. Wong, H. Wang, Z. Li, P. K. Chu, Nat. Commun. 2018, 9, 2055.