Characterization of the Dynamic Flow Response in Microfluidic Devices
Mohammed E. Elgack
Department of Mechanical Engineering, American University of Sharjah, Sharjah, UAE
Search for more papers by this authorCorresponding Author
Mohamed Abdelgawad
Department of Mechanical Engineering, American University of Sharjah, Sharjah, UAE
Department of Mechanical Engineering, Assiut University, Assiut, 71516 Egypt
E-mail: [email protected]
Search for more papers by this authorMohammed E. Elgack
Department of Mechanical Engineering, American University of Sharjah, Sharjah, UAE
Search for more papers by this authorCorresponding Author
Mohamed Abdelgawad
Department of Mechanical Engineering, American University of Sharjah, Sharjah, UAE
Department of Mechanical Engineering, Assiut University, Assiut, 71516 Egypt
E-mail: [email protected]
Search for more papers by this authorAbstract
The purpose of this study is to characterize the dynamic response of fluid flow in microchannels, which can show significant delay times before reaching steady flow conditions. Two main sources of these delays are numerically and experimentally investigated, the hydraulic compliance which originates from the flexibility of the system components (microchannel, tubing, syringe, etc.), and the compressibility of the liquid dead volume in the setup, also known as the “bottleneck effect”. A fluid-structure interaction model is presented for the compliance of rectangular PDMS microchannels that is used to form a numerically based relation for the compliance as a function of the pressure and geometry. This relation is successfully able to predict the dynamics of the flow inside PDMS microchannels in stop-flow experiments. The time delays associated with the bottleneck effect is also shown when using different syringe volumes, microchannel resistances, and liquid types. In these tests, the bottleneck effect has a much larger effect compared to the compliance of the PDMS microchannels. This is true even when using softer PDMS by increasing the monomer-to-curing agent mixing ratio. The characterization that is presented here allows for a simple analysis of microfluidic networks using the hydraulic-circuit approach.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401773-sup-0001-SuppMat.docx1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. C. Duffy, J. C. McDonald, O. J. A. Schueller, G. M. Whitesides, Anal. Chem. 1998, 70, 4974.
- 2K. Shiba, G. Li, E. Virot, G. Yoshikawa, D. A. Weitz, Lab Chip 2021, 21, 2805.
- 3W. Othman, M. A. Qasaimeh, in Proc. of the Int. Conf. on Manipulation, Automation and Robotics at Small Scales (MARSS), Eds: S. Haliyo, M. Boudaoud, M. A. Qasaimeh, S. Fatikow, IEEE, Piscataway, NJ 2024, pp. 1–6.
- 4S. Li, Z. Ma, Z. Cao, L. Pan, Y. Shi, Small 2020, 16, 1903822.
- 5L. B. Baker, J. B. Model, K. A. Barnes, M. L. Anderson, S. P. Lee, K. A. Lee, S. D. Brown, A. J. Reimel, T. J. Roberts, R. P. Nuccio, Sci. Adv. 2020, 6, eabe3929.
- 6Z. Ge, W. Guo, Y. Tao, H. Sun, X. Meng, L. Cao, S. Zhang, W. Liu, M. L. Akhtar, Y. Li, Adv. Mater. 2023, 35, 2304005.
- 7E. P. Kartalov, C. Walker, C. R. Taylor, W. F. Anderson, A. Scherer, Proc. Natl. Acad. Sci. USA 2006, 103, 12280.
- 8E. Seker, D. C. Leslie, H. Haj-Hariri, J. P. Landers, M. Utz, M. R. Begley, Lab Chip 2009, 9, 2691.
- 9B. Mosadegh, C. Kuo, Y. Tung, Y. Torisawa, T. Bersano-Begey, H. Tavana, S. Takayama, Nat. Phys. 2010, 6, 433.
- 10J. A. Weaver, J. Melin, D. Stark, S. R. Quake, M. A. Horowitz, Nat. Phys. 2010, 6, 218.
- 11M. Cheikh, I. Lakkis, Microfluid. Nanofluid. 2016, 20, 91.
- 12R. Jain, B. Lutz, Lab Chip 2017, 17, 1552.
- 13B. Yang, J. W. Levis, Q. Lin, in Proc. 17th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS), IEEE, Piscataway, NJ 2004, p. 379.
- 14V. Iyer, A. Raj, R. K. Annabattula, A. K. Sen, J. Micromech. Microeng. 2015, 25, 075003.
- 15X. Zhang, X. Wang, K. Chen, J. Cheng, N. Xiang, Z. Ni, RSC Adv. 2016, 6, 31639.
- 16A. Mehboudi, J. Yeom, Sci. Rep. 2021, 11, 10182.
- 17I. Abu Dagga, M. Abdelgawad, Int. J. Thermofluids 2022, 16, 100207.
10.1016/j.ijft.2022.100207 Google Scholar
- 18A. Raj, A. K. Sen, RSC Adv. 2018, 8, 20884.
- 19H. Pu, N. Liu, J. Yu, Y. Yang, Y. Sun, Y. Peng, S. Xie, J. Luo, L. Dong, H. Chen, IEEE Trans. Biomed. Eng. 2019, 66, 3185.
- 20Y. Yalikun, N. Ota, B. Guo, T. Tang, Y. Zhou, C. Lei, H. Kobayashi, Y. Hosokawa, M. Li, H. E Muñoz, Cytometry, Part A 2020, 97, 909.
- 21D. Wong, K. Erkorkmaz, C. L. Ren, IEEE/ASME Trans. Mechatronics 2020, 25, 1129.
- 22D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, P. S. Doyle, Lab Chip 2007, 7, 818.
- 23T. Gervais, J. El-Ali, A. Günther, K. F. Jensen, Lab Chip 2006, 6, 500.
- 24B. S. Hardy, K. Uechi, J. Zhen, H. P Kavehpour, Lab Chip 2009, 9, 935.
- 25P. Cheung, K. Toda-Peters, A. Q. Shen, Biomicrofluidics 2012, 6, 026501.
- 26A. Raj, A. K. Sen, Microfluid. Nanofluid. 2016, 20, 1.
- 27M. K. Raj, S. DasGupta, S. Chakraborty, Microfluid. Nanofluid. 2017, 21, 70.
- 28I. C. Christov, V. Cognet, T. C. Shidhore, H. A. Stone, J. Fluid Mech. 2018, 841, 267.
- 29A. Mehboudi, J. Yeom, Phys. Fluids 2018, 30, 92003.
- 30A. Mehboudi, J. Yeom, Microfluid. Nanofluid. 2019, 23, 66.
- 31I. C. Christov, X. Wang, I. C. Christov, Proc. R. Soc. A 2019, 475, 20190513.
10.1098/rspa.2019.0513 Google Scholar
- 32X. Wang, I. C. Christov, Phys. Fluids 2021, 33, 102004.
- 33E. Boyko, H. A. Stone, I. C. Christov, Phys. Rev. Fluids 2022, 7, 092201.
- 34P. Panda, K. P. Yuet, D. Dendukuri, T. Alan Hatton, P. S. Doyle, New J. Phys. 2009, 11, 115001.
- 35B. K. Wunderlich, U. A. Klessinger, A. R. Bausch, Lab Chip 2010, 10, 1025.
- 36U. Mukherjee, J. Chakraborty, S. Chakraborty, Soft Matter 2013, 9, 1562.
- 37S. B. Elbaz, H. Jacob, A. D. Gat, J. Fluid Mech. 2018, 846, 460.
- 38A. Martínez-Calvo, A. Sevilla, G. G. Peng, H. A. Stone, J. Fluid Mech. 2020, 885, A25.
- 39T. C. Inamdar, X. Wang, I. C. Christov, Phys. Rev. Fluids 2020, 5, 064101.
- 40X. Wang, I. C. Christov, J. Fluid Mech. 2022, 950, A26.
- 41G. Guyard, F. Restagno, J. D. McGraw, Phys. Rev. Lett. 2022, 129, 204501.
- 42D. Kim, N. C. Chesler, D. J. Beebe, Lab Chip 2006, 6, 639.
- 43Y. J. Kang, Appl. Sci. 2020, 10, 2475.
- 44I. E. Araci, S. Agaoglu, J. Y. Lee, L. Rivas Yepes, P. Diep, M. Martini, A. Schmidt, Lab Chip 2019, 19, 3899.
- 45M. A. Cartas-Ayala, PhD thesis, Massachusetts Institute of Technology, 2013.
- 46M. Hébert, J. Huissoon, C. L. Ren, J. Micromech. Microeng. 2022, 32, 043001.
- 47C. Kang, C. Roh, R. A. Overfelt, RSC Adv. 2014, 4, 3102.
- 48C. T. Pas, K. Du, L. Pan, R. Wang, S. Xu, Sci. Rep. 2022, 12, 20399.
- 49M. A. Sahin, M. Shehzad, G. Destgeer, Small 2024, 20, 2307956.
- 50P. Tabeling, Introduction to Microfluidics, Oxford University Press, Oxford, UK 2005.
10.1093/oso/9780198568643.001.0001 Google Scholar
- 51M. Martin, G. Blu, C. Eon, G. Guiochon, J. Chromatogr. A 1975, 112, 399.
- 52U. Ulmanella, PhD Thesis, University of California at Los Angeles, 2003.
- 53P. Burriel, J. Claret, J. Ignés-Mullol, F. Sagués, Phys. Rev. Lett. 2008, 100, 134503.
- 54X. Zhang, P. Coupland, P. D. I. Fletcher, S. J. Haswell, Chem. Eng. Res. Des. 2009, 87, 19.
- 55N. Márquez, P. Castaño, J. A. Moulijn, M. Makkee, M. T. Kreutzer, Ind. Eng. Chem. Res. 2010, 49, 1033.
- 56H. Manikantan, T. M. Squires, Phys. Rev. Fluids 2017, 2, 023301.
- 57G. Shan, Z. Zhang, C. Dai, X. Wang, L. Chu, Y. Sun, IEEE Rob. Autom. Lett. 2020, 5, 173.
- 58P. R. Von Lockette, E. M. Arruda, Acta Mech. 1999, 134, 81.
- 59I. E. Schuurman, Geotechnique 1966, 16, 269.
- 60D. G. Fredlund, Can. Geotech. J. 1976, 13, 386.
- 61S. A. Akers, PhD Thesis, Virginia Tech, 2001.
- 62J. Jablonská, in Proc. EPJ Web of Conf. EDP Sciences, Vol. 67, 2014, p. 02048.
- 63F. C. Sales, R. M. Ariati, V. T. Noronha, J. E. Ribeiro, in Proc. of the CSI 2021 The 4th Int. Conf. on Structural Integrity, Procedia Structural Integrity, Vol. 37, 2022, p. 383.
- 64P. J. Morris, MSc thesis, San Jose State University, 2010.
- 65A. Azmeer, I. Kanan, G. A. Husseini, M. Abdelgawad, Microfluid. Nanofluid. 2024, 28, 43.