Precursor-Induced Growth of Highly-Oriented Nanowire Arrays
Zhen Wu
School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116 China
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorGuoliang Liu
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023 P. R. China
School of Information Technology, Jiangsu Open University, Nanjing, 210017 P. R. China
Search for more papers by this authorJie Liang
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorTianqi Wei
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Ning Xu
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023 P. R. China
E-mail: [email protected]
Search for more papers by this authorZhen Wu
School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116 China
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorGuoliang Liu
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023 P. R. China
School of Information Technology, Jiangsu Open University, Nanjing, 210017 P. R. China
Search for more papers by this authorJie Liang
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorTianqi Wei
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Ning Xu
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
The unique optical, electrical, and thermal properties of 1D nanowires have sparked significant interest in growing high-quality 1D materials. Nanowire arrays and aligned growth offer scalability and maintain anisotropic properties, making them promising for research and applications. However, mass-producing high-quality nanowire arrays remains a challenge. A strategy is proposed for growing nanowire arrays based on homogeneous precursor as the substrate. Both calculations and experiments demonstrate that using a self-assembly micro-platform in advance facilitates epitaxial growth via chemical vapor deposition (CVD) to achieve highly oriented nanowire arrays. This is attributed to changes in crystallographic disregistry and adhesion energy. For instance, SnTe nanowire arrays are successfully grown using this method, with significantly lower thermal conductivity (≈5.5 W m−1 K−1 at 300 K) compared to the bulk material (≈9.1 W m−1 K−1 at 300 K), making them ideal for thermoelectric applications. The research lays the foundation for the tunable growth of IV–VI nanowire arrays and opens up possibilities for innovative thermoelectric nano–micro devices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401755-sup-0001-SuppMat.pdf729.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Xiang, T. Inoue, Y. Zheng, A. Kumamoto, Y. Qian, Y. Sato, M. Liu, D. Tang, D. Gokhale, J. Guo, K. Hisama, S. Yotsumoto, T. Ogamoto, H. Arai, Y. Kobayashi, H. Zhang, B. Hou, A. Anisimov, M. Maruyama, Y. Miyata, S. Okada, S. Chiashi, Y. Li, J. Kong, E. I. Kauppinen, Y. Ikuhara, K. Suenaga, S. Maruyama, Science. 2020, 367, 537.
- 2A. A. Balandin, F. Kargar, T. T. Salguero, R. K. Lake, Mater. Tod. 2022, 55, 74.
10.1016/j.mattod.2022.03.015 Google Scholar
- 3L. Liu, J. Hu, Z. Ma, Z. Zhu, B. He, F. Chen, Y. Lu, R. Xu, Y. Zhang, T. Ma, M. Sui, H. Huang, Nat. Commun. 2024, 15, 305.
- 4Y. Zhou, X. Zhou, X.-L. Yu, Z. Liang, X. Zhao, T. Wang, J. Miao, X. Chen, Nat. Commun. 2024, 15, 501.
- 5J. Guo, R. Xiang, T. Cheng, S. Maruyama, Y. Li, ACS Nanosci. Au. 2022, 2, 3.
- 6Z. He, J. L. Wang, S. M. Chen, J. W. Liu, S. H. Yu, Acc. Chem. Res. 2022, 55, 1480.
- 7P. Zhou, I. A. Navid, Y. Ma, Y. Xiao, P. Wang, Z. Ye, B. Zhou, K. Sun, Z. Mi, Nature. 2023, 613, 66.
- 8L. Cai, W. He, X. Xue, J. Huang, K. Zhou, X. Zhou, Z. Xu, G. Yu, Natl. Sci. Rev. 2021, 8, nwaa298.
- 9S. Zhang, C. Tan, R. Yan, X. Zou, F. L. Hu, Y. Mi, C. Yan, S. Zhao, Angew. Chem. Int. Ed. Engl. 2023, 62, 202302795
- 10Y. K. Zhu, Y. Jin, J. Zhu, X. Dong, M. Liu, Y. Sun, M. Guo, F. Li, F. Guo, Q. Zhang, Z. Liu, W. Cai, J. Sui, Adv. Sci. 2023, 10, 2206395.
- 11L. Yang, J. Guo, T. Yang, C. Guo, S. Zhang, S. Luo, W. Dai, B. Li, X. Luo, Y. Li, J. Hazard. Mater. 2021, 402, 123741.
- 12W. Yuan, J. Yuan, J. Xie, C. M. Li, ACS Appl. Mater. Interfaces. 2016, 8, 6082.
- 13J. H. He, J. H. Hsu, C. W. Wang, H. N. Lin, L. J. Chen, Z. L. Wang, J. Phys. Chem. B. 2006, 110, 50.
- 14D. Ito, M. L. Jespersen, J. E. Hutchison, ACS Nano 2008, 2, 2001.
- 15E. Xu, Z. Li, J. A. Acosta, N. Li, B. Swartzentruber, S. Zheng, N. Sinitsyn, H. Htoon, J. Wang, S. Zhang, Nano Res. 2016, 9, 820.
- 16E. Z. Xu, Z. Li, J. A. Martinez, N. Sinitsyn, H. Htoon, N. Li, B. Swartzentruber, J. A. Hollingsworth, J. Wang, S. X. Zhang, Nanoscale. 2015, 7, 2869.
- 17Z. Li, E. Xu, Y. Losovyj, N. Li, A. Chen, B. Swartzentruber, N. Sinitsyn, J. Yoo, Q. Jia, S. Zhang, Nanoscale. 2017, 9, 13014.
- 18S. P. Keshri, A. Medhi, J. Phys. Condens. Matter. 2021, 33, 115701.
- 19F. Li, X. Liu, S.-R. Li, X.-F. Zhang, N. Ma, X.-J. Li, X.-Y. Lin, L. Chen, H. Wu, L.-M. Wu, Energy Environ. Sci. 2024, 17, 158.
- 20Z. Chen, X. Guo, F. Zhang, Q. Shi, M. Tang, R. Ang, J. Mater. Chem. A. 2020, 8, 16790.
- 21M. Zhou, Z. M. Gibbs, H. Wang, Y. Han, C. Xin, L. Li, G. J. Snyder, Phys. Chem. Chem. Phys. 2014, 16, 20741.
- 22P. Liu, H. J. Han, J. Wei, D. Hynek, J. L. Hart, M. G. Han, C. J. Trimble, J. Williams, Y. Zhu, J. J. Cha, ACS Appl. Electron. Mater. 2021, 3, 184.
- 23R. Moshwan, L. Yang, J. Zou, Z.-G. Chen, Adv. Funct. Mater. 2017, 27, 1703278.
- 24M. Safdar, Q. Wang, M. Mirza, Z. Wang, K. Xu, J. He, Nano Lett. 2013, 13, 5344.
- 25J. Ning, K. Men, G. Xiao, B. Zou, L. Wang, Q. Dai, B. Liu, G. Zou, Cryst. Eng. Comm. 2010, 12, 4275.
- 26S. Guo, A. F. Fidler, K. He, D. Su, G. Chen, Q. Lin, J. M. Pietryga, V. I. Klimov, J. Am. Chem. Soc. 2015, 137, 15074.
- 27J. Shen, Y. Jung, A. S. Disa, F. J. Walker, C. H. Ahn, J. J. Cha, Nano Lett. 2014, 14, 4183.
- 28D. Sarkar, T. Ghosh, A. Banik, S. Roychowdhury, D. Sanyal, K. Biswas, Angew. Chem., Int. Ed. 2020, 59, 11115.
- 29M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, P. Gogna, Adv. Mater. 2007, 19, 1043.
- 30Z. Wu, G. Liu, Y. Wang, X. Yang, T. Wei, Q. Wang, J. Liang, N. Xu, Z. Li, B. Zhu, H. Qi, Y. Deng, J. Zhu, Adv. Funct. Mater. 2019, 29, 1906639.
- 31Y. Wang, S. Liu, Z. Wu, G. Liu, X. Yang, T. Wei, Q. Wang, Y. Ye, D. Li, J. Zhu, Mater. Tod. Phys. 2021, 18, 100379.
- 32S. P. Keshri, A. Medhi, J. Phys-Condens. Mat. 2021, 33, 115701.
- 33Y. Wang, R. Lin, P. Zhu, Q. Zheng, Q. Wang, D. Li, J. Zhu, Nano Lett. 2018, 18, 2772.
- 34X. Qian, J. Zhou, G. Chen, Nat. Mater. 2021, 20, 1188.
- 35R. Pathak, D. Sarkar, K. Biswas, Angew. Chem., Int. Ed. 2021, 60, 17686.
- 36A. Pandit, R. Haleoot, B. Hamad, J. Mater. Sci. 2021, 56, 10424.
- 37K. Ren, X. Ma, X. Liu, Y. Xu, W. Huo, W. Li, G. Zhang, Nanoscale. 2022, 14, 8463.
- 38M. Cagnoni, D. Führen, M. Wuttig, Adv. Mater. 2018, 30, 1801787.
- 39P. Sutter, E. Sutter, Acc. Chem. Res. 2023, 56, 3235.
- 40M. D. Segall, J. D. L. Philip, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys-Condens. Mat. 2002, 14, 2717.
- 41J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B. 1992, 46, 6671.
- 42B. G. Pfrommer, M. Côté, S. G. Louie, M. L. Cohen, J. Comput. Phys. 1997, 131, 233.