Engineering MXene Surface via Oxygen Functionalization and Au Nanoparticle Deposition for Enhanced Electrocatalytic Hydrogen Evolution Reaction
Mengrui Li
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071 China
Search for more papers by this authorXiaoxiao Dong
School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 China
Search for more papers by this authorQinzhu Li
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071 China
Search for more papers by this authorYaru Liu
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071 China
Search for more papers by this authorCorresponding Author
Shuang Cao
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chun-Chao Hou
School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Tong Sun
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorMengrui Li
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071 China
Search for more papers by this authorXiaoxiao Dong
School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 China
Search for more papers by this authorQinzhu Li
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071 China
Search for more papers by this authorYaru Liu
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071 China
Search for more papers by this authorCorresponding Author
Shuang Cao
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chun-Chao Hou
School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Tong Sun
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
MXene, a family of 2D transition metal carbides and nitrides, presents promising applications in electrocatalysis. Maximizing its large surface area is key to developing efficient non-noble-metal catalysts for the hydrogen evolution reaction (HER). In this study, oxygen-functionalized Ti3C2Tx MXene (Ti3C2Ox) is synthesized and deposited gold nanoparticles (Au NPs) onto it, forming a novel composite material, Au-Ti3C2Ox. By selectively removing other functional groups, mainly -O functional groups are retained on the surface, directing electron transfer from Au NPs to MXene due to electronic metal-support interaction (EMSI), thereby improving the catalytic activity of the MXene surface. Additionally, the interaction between Au NPs and -O functional groups further enhanced the overall catalytic activity, achieving an overpotential of 62 mV and a Tafel slope of 40.1 mV dec−1 at a current density of −10 mA cm−2 in 0.5 m H2SO4 solution. Density functional theory calculations and scanning electrochemical microscopy with ≤150 nm resolution confirmed the enhanced catalytic efficiency due to the specific interaction between Au NPs and Ti3C2Ox. This work provides a surface modification strategy to fully utilize the MXene surface and enhance the overall catalytic activity of MXene-based catalysts.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401569-sup-0001-SuppMat.docx31 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Liang, Z. Cai, X. He, Y. Luo, D. Zheng, S. Sun, Q. Liu, L. Li, W. Chu, S. Alfaifi, F. Luo, Y. Yao, B. Tang, X. Sun, Chem 2024, 10, 3067.
- 2J. Tian, Q. Liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc. 2014, 136, 7587.
- 3Z. Cai, J. Liang, Z. Li, T. Yan, C. Yang, S. Sun, M. Yue, X. Liu, T. Xie, Y. Wang, T. Li, Y. Luo, D. Zheng, Q. Liu, J. Zhao, X. Sun, B. Tang, Nat. Commun. 2024, 15, 6624.
- 4X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148.
- 5C. Wei, R. R. Rao, J. Peng, B. Huang, I. E. L. Stephens, M. Risch, Z. J. Xu, Y. Shao-Horn, Adv. Mater. 2019, 31, 1806296.
- 6Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 7L. Zhang, Y. Jia, X. Yan, X. Yao, Small 2018, 14, 1800235.
- 8W. Zhong, B. Xiao, Z. Lin, Z. Wang, L. Huang, S. Shen, Q. Zhang, L. Gu, Adv. Mater. 2021, 33, 2007894.
- 9X. He, Y. Cheng, Q. Zhang, T. Yan, K. Dong, Y. Yao, J. Nan, Y. Zhou, X. Guo, D. Zheng, S. Sun, J. Zhao, B. Ying, F. Luo, B. Tang, X. Sun, Nano Today 2024, 58, 102454.
- 10J. Liang, J. Li, H. Dong, Z. Li, X. He, Y. Wang, Y. Yao, Y. Ren, S. Sun, Y. Luo, D. Zheng, J. Li, Q. Liu, F. Luo, T. Wu, G. Chen, X. Sun, B. Tang, Nat. Commun. 2024, 15, 6208.
- 11J. Liang, Z. Cai, Z. Li, Y. Yao, Y. Luo, S. Sun, D. Zheng, Q. Liu, X. Sun, B. Tang, Nat. Commun. 2024, 15, 2950.
- 12T. Pu, J. Ding, F. Zhang, K. Wang, N. Cao, E. J. M. Hensen, P. Xie, Angew. Chem., Int. Ed. 2023, 62, 202305964.
- 13C. Wan, Y. N. Regmi, B. M. Leonard, Angew. Chem., Int. Ed. 2014, 126, 6525.
- 14V. Ramalingam, P. Varadhan, H. Fu, H. Kim, D. Zhang, S. Chen, L. Song, D. Ma, Y. Wang, H. N. Alshareef, J. He, Adv. Mater. 2019, 31, 1903841.
- 15M. Bat-Erdene, M. Batmunkh, B. Sainbileg, M. Hayashi, A. S. R. Bati, J. Qin, H. Zhao, Y. L. Zhong, J. G. Shapter, Small 2021, 17, 2102218.
- 16D. N. Nguyen, T. K. C. Phu, J. Kim, W. T. Hong, J. Kim, S. H. Roh, H. S. Park, C. Chung, W. Choe, H. Shin, J. Y. Lee, J. K. Kim, Small 2022, 18, 2204797.
- 17X. Bai, C. Ling, L. Shi, Y. Ouyang, Q. Li, J. Wang, Sci. Bull. 2018, 63, 1397.
- 18C. Ling, L. Shi, Y. Ouyang, Q. Chen, J. Wang, Adv. Sci. 2016, 3, 1600180.
- 19J. Huang, M. Feng, Y. Peng, C. Huang, X. Yue, S. Huang, Small 2023, 19, 2206098.
- 20L. He, J. Liu, Y. Liu, B. Cui, B. Hu, M. Wang, K. Tian, Y. Song, S. Wu, Z. Zhang, Z. Peng, M. Du, Appl. Catal. B 2019, 248, 366.
- 21X. Zhao, W.-P. Li, Y. Cao, A. Portniagin, B. Tang, S. Wang, Q. Liu, D. Y. W. Yu, X. Zhong, X. Zheng, A. L. Rogach, ACS Nano 2024, 18, 4256.
- 22G. Li, T. Sun, H. Niu, Y. Yan, T. Liu, S. Jiang, Q. Yang, W. Zhou, L. Guo, Adv. Funct. Mater. 2023, 33, 2212514.
- 23H. Niu, C. Huang, T. Sun, Z. Fang, X. Ke, R. Zhang, N. Ran, J. Wu, J. Liu, W. Zhou, Angew. Chem., Int. Ed. 2024, 63, 202401819.
- 24C. Cui, R. Cheng, H. Zhang, C. Zhang, Y. Ma, C. Shi, B. Fan, H. Wang, X. Wang, Adv. Funct. Mater. 2020, 30, 2000693.
- 25S. J. Tauster, S. C. Fung, R. T. K. Baker, J. A. Horsley, Science 1981, 211, 1121.
- 26H. Zhang, H. Han, X. Yang, H. Ma, Z. Song, X. Ji, Catal. Sci. Technol. 2023, 13, 6951.
- 27J. Zhang, Y. Zhao, X. Guo, C. Chen, C. Dong, R. Liu, C. Han, Y. Li, Y. Gogotsi, G. Wang, Nat. Catal. 2018, 1, 985.
- 28C. Li, S. H. Kim, H. Y. Lim, Q. Sun, Y. Jiang, H. Noh, S. Kim, J. Baek, S. K. Kwak, J. Baek, Adv. Mater. 2023, 35, 2301369.
- 29S. Jiang, T. Sun, C. Gu, Y. Ma, Z. Wang, D. Wang, Z. Wang, Nano Res. 2023, 16, 8902.
- 30H. Wang, L. Wang, D. Lin, X. Feng, Y. Niu, B. Zhang, F. Xiao, Nat. Catal. 2021, 4, 418.
- 31V. Kamysbayev, A. S. Filatov, H. Hu, X. Rui, F. Lagunas, D. Wang, R. F. Klie, D. V. Talapin, Science 2020, 369, 979.
- 32Y. Liu, H. Xiao, W. A. Goddard, J. Am. Chem. Soc. 2016, 138, 15853.
- 33M. Khazaei, M. Arai, T. Sasaki, A. Ranjbar, Y. Liang, S. Yunoki, Phys. Rev. B 2015, 92, 075411.
- 34Y. Jiang, T. Sun, X. Xie, W. Jiang, J. Li, B. Tian, C. Su, ChemSusChem 2019, 12, 1368.
- 35C. Ling, L. Shi, Y. Ouyang, J. Wang, Chem. Mater. 2016, 28, 9026.
- 36J. Wang, Y. Guan, Q. Zhang, H. Zhu, X. Li, Y. Li, Z. Dong, G. Yuan, Y. Cong, Appl. Surf. Sci. 2022, 582, 152481.
- 37H. Jing, H. Yeo, B. Lyu, J. Ryou, S. Choi, J.-H. Park, B. H. Lee, Y.-H. Kim, S. Lee, ACS Nano 2021, 15, 1388.
- 38M. Pandey, K. S. Thygesen, J. Phys. Chem. C 2017, 121, 13593.
- 39A. D. Handoko, K. D. Fredrickson, B. Anasori, K. W. Convey, L. R. Johnson, Y. Gogotsi, A. Vojvodic, Z. W. Seh, ACS Appl. Energy Mater. 2018, 1, 173.
- 40Y. Xie, M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, X. Yu, K.-W. Nam, X.-Q. Yang, A. I. Kolesnikov, P. R. C. Kent, J. Am. Chem. Soc. 2014, 136, 6385.
- 41Y. Tang, J. Zhu, C. Yang, F. Wang, J. Electrochem. Soc. 2016, 163, A1975
- 42K. J. Cai, Y. Zheng, P. Shen, S. Y. Chen, CrystEngComm 2014, 16, 5466.
- 43S. Song, F. Yin, Y. Fu, J. Ren, J. Ma, Y. Liu, R. Ma, W. Ye, Chem. Eng. J. 2023, 451, 138818.
- 44A. Li, X. Wang, J. Chen, C. Dong, D. Wang, Z. Mao, Coatings 2022, 12, 1005.
- 45G. R. Berdiyorov, EPL 2015, 111, 67002.
- 46S. Song, F. Yin, Y. Fu, J. Ren, J. Ma, Y. Liu, R. Ma, W. Ye, Chem. Eng. J. 2023, 451, 138818.
- 47G. L. Georgiev, T. Sultana, R. J. Baird, G. Auner, G. Newaz, R. Patwa, H. Herfurth, Appl. Surf. Sci. 2008, 254, 7173.
- 48X. Li, X. Ma, H. Zhang, N. Xue, Q. Yao, T. He, Y. Qu, J. Zhang, X. Tao, Chem. Eng. J. 2023, 455, 140635.
- 49J. Li, X. Yuan, C. Lin, Y. Yang, L. Xu, X. Du, J. Xie, J. Lin, J. Sun, Adv. Energy Mater. 2017, 7, 1602725.
- 50J. Choi, Y. Kim, S. Cho, K. Park, H. Kang, S. J. Kim, H. Jung, Adv. Funct. Mater. 2020, 30, 2003998.
- 51H. Zhang, Z. Wang, F. Wang, Y. Zhang, H. Wang, Y. Liu, Anal. Chem. 2020, 92, 5546.
- 52L. Wang, H. Zhang, T. Zhuang, J. Liu, N. Sojic, Z. Wang, Anal. Chim. Acta 2022, 1191, 339346.
- 53D. Liu, G. Zhang, Q. Ji, Y. Zhang, J. Li, ACS Appl. Mater. Interfaces 2019, 11, 25758.
- 54M. Shi, D. Bao, B. Wulan, Y. Li, Y. Zhang, J. Yan, Q. Jiang, Adv. Mater. 2017, 29, 1606550.
- 55A. Howard, D. N. S. Clark, C. E. J. Mitchell, R. G. Egdell, V. R. Dhanak, Surf. Sci. 2002, 518, 210.
- 56K. Yu, S. Wang, Q. Li, T. Hou, Y. Xin, R. He, W. Zhang, S. Liang, L. Wang, W. Zhu, Nano Res. 2022, 15, 2862.
- 57J. Zhang, E. Wang, S. Cui, S. Yang, X. Zou, Y. Gong, Nano Lett. 2022, 22, 1398.
- 58H. Tang, Y. Su, B. Zhang, A. F. Lee, M. A. Isaacs, K. Wilson, L. Li, Y. Ren, J. Huang, M. Haruta, B. Qiao, X. Liu, C. Jin, D. Su, J. Wang, T. Zhang, Sci. Adv. 2017, 3, e1700231.
- 59G. Elumalai, H. Noguchi, K. Uosaki, J. Electroanal. Chem. 2019, 848, 113312.
- 60P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu, Y. Tang, J. Lai, Y. Chao, M. Luo, F. Lin, J. Zhou, D. Su, S. Guo, Nano Energy 2019, 56, 127.
- 61P. Kuang, Y. Wang, B. Zhu, F. Xia, C. Tung, J. Wu, H. M. Chen, J. Yu, Adv. Mater. 2021, 33, 2008599.
- 62J. Yang, W. Li, S. Tan, K. Xu, Y. Wang, D. Wang, Y. Li, Angew. Chem., Int. Ed. 2021, 60, 19085.
- 63D. N. Nguyen, T. K. C. Phu, J. Kim, W. T. Hong, J. Kim, S. H. Roh, H. S. Park, C. Chung, W. Choe, H. Shin, J. Y. Lee, J. K. Kim, Small 2022, 18, 2204797.
- 64Z. Lv, W. Ma, M. Wang, J. Dang, K. Jian, D. Liu, D. Huang, Adv. Funct. Mater. 2021, 31, 2102576.
- 65O. J. Wahab, E. Daviddi, B. Xin, P. Z. Sun, E. Griffin, A. W. Colburn, D. Barry, M. Yagmurcukardes, F. M. Peeters, A. K. Geim, M. Lozada-Hidalgo, P. R. Unwin, Nature 2023, 620, 782.
- 66Z. Jin, A. J. Bard, Angew. Chem., Int. Ed. 2021, 60, 794.
- 67A. Djire, X. Wang, C. Xiao, O. C. Nwamba, M. V. Mirkin, N. R. Neale, Adv. Funct. Mater. 2020, 30, 2001136.
- 68Q. Zhao, L. Liu, S. Li, R. Liu, Appl. Surf. Sci. 2019, 465, 164.
- 69W. Li, H. Zhang, K. Zhang, W. Hu, Z. Cheng, H. Chen, X. Feng, T. Peng, Z. Kou, Appl. Catal. B. 2022, 306, 121095.
- 70H. Xu, J. Yuan, G. He, H. Chen, Coord. Chem. Rev. 2023, 475, 214869.
- 71P. Sabatier, Ber. Dtsch. Chem. Ges. 1911, 44, 1984.
- 72R. F. W. Bader, T. T. Nguyen-Dang, Advances in Quantum Chemistry, Elsevier, Amsterdam 1981, pp. 63–124.
10.1016/S0065-3276(08)60326-3 Google Scholar
- 73S. Song, F. Yin, Y. Fu, J. Ren, J. Ma, Y. Liu, R. Ma, W. Ye, Chem. Eng. J. 2023, 451, 138818.
- 74Q. Zhu, F. Xie, J. Liu, X. Jian, Z. Yu, X. Gao, H. Li, X. Zhang, Y. Wang, Y. Wang, C. Fan, R. Li, J. Alloy Compd. 2023, 960, 170764.
- 75H. Zhang, F. Wan, X. Li, X. Chen, S. Xiong, B. Xi, Adv. Funct. Mater. 2023, 33, 2306340.
- 76P. Sun, M. V. Mirkin, Anal. Chem. 2006, 78, 6526.
- 77Y. Wang, K. Kececi, J. Velmurugan, M. V. Mirkin, Chem. Sci. 2013, 4, 3606.
- 78J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 79G. Kresse, D. Joubert, Phys. Rev. B. 1999, 59, 1758.
- 80S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 81H. J. Monkhorst, J. D. Pack, Phys. Rev. B. 1976, 13, 5188.
- 82M. Guo, J. Zhan, Z. Wang, X. Wang, Z. Dai, T. Wang, Chinese Chem. Lett. 2023, 34, 107709.
- 83V. Wang, N. Xu, J. Liu, G. Tang, W. Geng, Comput. Phys. Commun. 2021, 267, 108033.