TVT-Based New Building Block with Enhanced π-Electron Delocalization for Efficient Non-Fused Photovoltaic Acceptor
Junzhen Ren
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Shaoqing Zhang
School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHuixue Li
School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorJianqiu Wang
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorLijiao Ma
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorZhihao Chen
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorTao Wang
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorTao Zhang
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Jianhui Hou
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 China
School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJunzhen Ren
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Shaoqing Zhang
School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHuixue Li
School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorJianqiu Wang
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorLijiao Ma
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorZhihao Chen
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorTao Wang
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorTao Zhang
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Jianhui Hou
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 China
School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
To address the high-cost issue that impedes the large-scale fabrication and industrialization of organic solar cells (OSCs), it is crucial to design low-cost photovoltaic materials with simplified synthesis procedures. In this study, a novel fully non-fused acceptor, ATVT-BO, featuring a triisopropylbenzene-substituted (E)-1,2-di(thiophen-2-yl)ethene (TVT) unit as the central core is designed and synthesized. A control acceptor, A4T-BO, with the same alkyl chains but a bithiophene central core, is also synthesized for comparison. Theoretical calculations and practical measurements reveal that compared to A4T-BO, the insertion of an ethylene bond in ATVT-BO enhances the molecular planarity and reduces the aromaticity, leading to enhanced π-electron delocalization and thus improved electron mobility and a red-shifted optical absorption spectrum. The 3D molecular packing mode of ATVT-BO, characterized by tight intermolecular interactions, also promotes efficient charge transport in OSCs. Consequently, when paired with the low-cost polymer PTVT-T, featuring an ester-substituted TVT structure, as the photoactive layer, the PTVT-T:ATVT-BO-based device achieves a remarkable power conversion efficiency of 14.8%, distinctly higher than that of PTVT-T:A4T-BO-based cell. The result highlights the significant potential of TVT units in creating both low-cost polymer donors and fully non-fused acceptors, which opens up new possibilities for designing low-cost photoactive materials in OSCs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smtd202401511-sup-0001-SuppMat.docx1 MB | Supporting Information |
smtd202401511-sup-0002-txt.zip2.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule 2022, 6, 171; b) Y. Jiang, S. Sun, R. Xu, F. Liu, X. Miao, G. Ran, K. Liu, Y. Yi, W. Zhang, X. Zhu, Nat. Energy 2024, 9, 975; c) Y. Sun, L. Wang, C. Guo, J. Xiao, C. Liu, C. Chen, W. Xia, Z. Gan, J. Cheng, J. Zhou, Z. Chen, J. Zhou, D. Liu, T. Wang, W. Li, J. Am. Chem. Soc. 2024, 146, 12011.
- 2a) Y. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 2015, 27, 1170; b) W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, J. Am. Chem. Soc. 2017, 139, 7148; c) J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140; d) C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 2021, 6, 605; e) Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Adv. Mater. 2020, 32, 1908205; f) J. Song, Z. Bo, Chin. Chem. Lett. 2023, 34, 108163.
- 3a) L.-Y. Xu, Y. Gao, W. Wang, Y. Shao, M. Chen, X. Yang, Y. Fu, M. Zhang, X. Lu, R. Sun, J. Min, Energy Environ. Sci. 2023, 16, 3942; b) J. J. Rech, J. Neu, Y. Qin, S. Samson, J. Shanahan, R. F. Josey, H. Ade, W. You, ChemSusChem 2021, 14, 3561; c) Z. P. Yu, Z. X. Liu, F. X. Chen, R. Qin, T. K. Lau, J. L. Yin, X. Kong, X. Lu, M. Shi, C. Z. Li, H. Chen, Nat. Commun. 2019, 10, 2152; d) Y. N. Chen, M. Li, Y. Wang, J. Wang, M. Zhang, Y. Zhou, J. Yang, Y. Liu, F. Liu, Z. Tang, Q. Bao, Z. Bo, Angew. Chem., Int. Ed. 2020, 59, 22714.
- 4a) X. Li, F. Pan, C. Sun, M. Zhang, Z. Wang, J. Du, J. Wang, M. Xiao, L. Xue, Z. G. Zhang, C. Zhang, F. Liu, Y. Li, Nat. Commun. 2019, 10, 519; b) L. Li, F. Meng, M. Zhang, Z. G. Zhang, D. Zhao, Angew. Chem., Int. Ed. 2022, 61, 202206311; c) X. Zhong, T.-W. Chen, L. Yan, W. You, ACS Appl. Polym. Mater. 2023, 5, 1937.
- 5a) L. Ma, S. Zhang, J. Zhu, J. Wang, J. Ren, J. Zhang, J. Hou, Nat. Commun. 2021, 12, 5093; b) X. Wang, H. Lu, Y. Liu, A. Zhang, N. Yu, H. Wang, S. Li, Y. Zhou, X. Xu, Z. Tang, Z. Bo, Adv. Energy Mater. 2021, 11, 2102591; c) S. Shen, Y. Mi, Y. Ouyang, Y. Lin, J. Deng, W. Zhang, J. Zhang, Z. Ma, C. Zhang, J. Song, Z. Bo, Angew. Chem., Int. Ed. 2023, 135, 202316495.
- 6Y. Liu, B. Liu, C.-Q. Ma, F. Huang, G. Feng, H. Chen, J. Hou, L. Yan, Q. Wei, Q. Luo, Q. Bao, W. Ma, W. Liu, W. Li, X. Wan, X. Hu, Y. Han, Y. Li, Y. Zhou, Y. Zou, Y. Chen, Y. Li, Y. Chen, Z. Tang, Z. Hu, Z.-G. Zhang, Z. Bo, Sci. China Chem. 2021, 65, 224.
- 7a) X. Zhang, M. Köhler, A. J. Matzger, Macromolecules 2004, 37, 6306; b) P. Coppo, D. C. Cupertino, S. G. Yeates, M. L. Turner, J. Mater. Chem. 2002, 12, 2597.
- 8a) J. Zhu, C. Yang, L. Ma, T. Zhang, S. Li, S. Zhang, H. Fan, J. Hou, Org. Electron. 2022, 105, 106512; b) Z. Yao, Y. Li, S. Li, J. Xiang, X. Xia, X. Lu, M. Shi, H. Chen, ACS Appl. Energy Mater. 2020, 4, 819.
- 9a) Y. Zhou, M. Li, H. Lu, H. Jin, X. Wang, Y. Zhang, S. Shen, Z. Ma, J. Song, Z. Bo, Adv. Funct. Mater. 2021, 31, 2101742; b) Q. Yang, R. Wu, L. Yang, W. Liu, X. Meng, W. Zhang, S. Shen, M. Li, Y. Zhou, J. Song, Dyes. Pigm. 2024, 221, 111808.
- 10a) X. Li, Z. Xu, X. Guo, Q. Fan, M. Zhang, Y. Li, Org. Electron. 2018, 58, 133; b) Z. Zhang, S. Zhang, Z. Liu, Z. Zhang, Y. Li, C. Li, H. Chen, Acta Phys-Chim. Sin. 2019, 35, 394.
- 11L. Ma, S. Zhang, J. Ren, G. Wang, J. Li, Z. Chen, H. Yao, J. Hou, Angew. Chem., Int. Ed. 2022, 62, 202214088.
- 12a) J. Ren, Y. Zhang, F. Liu, Y. Yan, M. Qiu, V. A. L. Roy, H. Zheng, M. Sun, R. Yang, RSC Adv. 2016, 6, 68049; b) J. Ren, P. Bi, J. Zhang, J. Liu, J. Wang, Y. Xu, Z. Wei, S. Zhang, J. Hou, Natl. Sci. Rev. 2021, 8, nwab031; c) H. Huang, Z. Chen, R. P. Ortiz, C. Newman, H. Usta, S. Lou, J. Youn, Y.-Y. Noh, K.-J. Baeg, L. X. Chen, A. Facchetti, T. Marks, J. Am. Chem. Soc. 2012, 134, 10966.
- 13a) Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Chem. Rev. 2009, 109, 5868; b) Z. G. Zhang, J. Wang, J. Mater. Chem. 2012, 22, 4178.
- 14P. Bi, J. Ren, S. Zhang, J. Wang, Z. Chen, M. Gao, Y. Cui, T. Zhang, J. Qin, Z. Zheng, L. Ye, X. Hao, J. Hou, Nano Energy 2022, 100, 107463.
- 15H. Yao, Y. Cui, D. Qian, C. S. Ponseca Jr., A. Honarfar, Y. Xu, J. Xin, Z. Chen, L. Hong, B. Gao, R. Yu, Y. Zu, W. Ma, P. Chabera, T. Pullerits, A. Yartsev, F. Gao, J. Hou, J. Am. Chem. Soc. 2019, 141, 7743.
- 16T. Lu, J. Mol. Model. 2021, 27, 263.
- 17a) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Chem. Rev. 2005, 105, 3842; b) B. Yin, X. Zhou, Y. Li, G. Hu, W. Wei, M. Yang, S. Jeong, W. Deng, B. Wu, Y. Cao, B. Huang, L. Pan, X. Yang, Z. Fu, Y. Fang, L. Shen, C. Yang, H. Wu, L. Lan, F. Huang, Y. Cao, C. Duan, Adv. Mater. 2024, 36, 2310811.
- 18a) Y. Kim, H. Hwang, N. K. Kim, K. Hwang, J. J. Park, G. I. Shin, D. Y. Kim, Adv. Mater. 2018, 30, 1706557; b) T. Mikie, M. Hayakawa, K. Okamoto, K. Iguchi, S. Yashiro, T. Koganezawa, M. Sumiya, H. Ishii, S. Yamaguchi, A. Fukazawa, I. Osaka, Chem. Mater. 2021, 33, 8183.
- 19C. Zhang, S. Mahadevan, J. Yuan, J. K. W. Ho, Y. Gao, W. Liu, H. Zhong, H. Yan, Y. Zou, S.-W. Tsang, S. K. So, ACS Energy Lett. 2022, 7, 1971.
- 20Y. Jiang, Y. Li, F. Liu, W. Wang, W. Su, W. Liu, S. Liu, W. Zhang, J. Hou, S. Xu, Y. Yi, X. Zhu, Nat. Commun. 2023, 14, 5079.