Ultrahigh-Selectivity Photocatalytic Upgrading of Bio-Aldehydes/Diols to Monoalcohols Via In Situ Circumventing Coupling Co-Products Over Janus Single-Atom Pd/TiO2
Ye Meng
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025 China
Search for more papers by this authorJie Li
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025 China
Search for more papers by this authorHuan Liu
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025 China
Search for more papers by this authorTengyu Liu
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025 China
Search for more papers by this authorCorresponding Author
Jinguang Hu
Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4 Canada
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hu Li
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYe Meng
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025 China
Search for more papers by this authorJie Li
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025 China
Search for more papers by this authorHuan Liu
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025 China
Search for more papers by this authorTengyu Liu
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025 China
Search for more papers by this authorCorresponding Author
Jinguang Hu
Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4 Canada
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hu Li
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Photocatalytic transfer hydrogenation of biomass-derived aldehydes to alcohols often results in unwanted coupling co-products. Herein, an ultraselective hydrogen transfer system enabled by in situ oxidative C─C bond cleavage over a Janus single-atom palladium on titanium dioxide (0.5Pd/TiO2) photocatalyst is presented. The TiO2 carrier promotes hydrogen-donor activation, while Pd single atoms function as both electron and hydrogen transfer centers, enabling photocatalytic conversion of bio-based furfural to furfuryl alcohol in >99% yield using ethanol as solvent/H-donor at 25 °C. The control/in situ experiments and calculations reveal that ethanol on 0.5Pd/TiO2 preferentially activates a co-formed coupling by-product to undergo C─C bond cleavage followed by proton-coupled electron transfer, exclusively producing furfuryl alcohol. 0.5Pd/TiO2 with good reusability is applicable to hydrogenative upgrading of various aldehydes/diols into corresponding monoalcohols with 81‒99% yields. This in situ Janus photocatalytic conversion strategy offers a new approach to eliminate side reactions in reductive upgrading of unsaturated organics/biomass with high selectivity.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401510-sup-0001-SuppMat.docx1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) X. Zhao, H. Zhou, V. S. Sikarwar, M. Zhao, A. A. Park, P. S. Fennell, L. Shen, L. S. Fan, Energy Environ. Sci. 2017, 10, 1885; b) A. M. Rollo, A. Rollo, C. Mora, Nat. Rev. Earth Environ. 2020, 1, 332.
- 2a) M. Wang, H. Zhou, F. Wang, Acc. Chem. Res. 2023, 56, 1057; b) T. Liu, J. Huang, J. Li, K. Wang, Z. Guo, H. Wu, S. Yang, H. Li, Green Chem. 2023, 25, 10338; c) X. Wu, N. Luo, S. Xie, H. Zhang, Q. Zhang, F. Wang, Y. Wang, Chem. Soc. Rev. 2020, 49, 6198; d) Y. Meng, S. Yang, H. Li, ChemSusChem 2022, 15, 202102581.
- 3Z. Gao, P. Ren, L. Sun, N. Luo, F. Wang, Nat. Synth. 2024, 3, 438.
- 4C. Li, J. Li, L. Qin, P. Yang, D. G. Vlachos, ACS Catal. 2021, 11, 11336.
- 5a) T. Werpy, G. Petersen, A. Aden, J. Bozell, J. Holladay, J. White, A. Manheim, D. Eliot, L. Lasure, S. Jones, Top Value Added Chemicals from Biomass, Vol. 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas, U.S. Department of Energy, Washington, DC 2004; b) S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau, S. Royer, Chem. Rev. 2018, 118, 11023; c) X. Li, P. Jia, T. Wang, ACS Catal. 2016, 6, 7621.
- 6a) S. Dong, Z. Liu, R. Liu, L. Chen, J. Chen, Y. Xu, ACS Appl. Nano Mater. 2018, 1, 4247; b) M. Zhang, Z. Li, ACS Sustainable Chem. Eng. 2019, 7, 11485; c) S. H. Dong, M. Z. Chen, J. R. Zhang, J. Z. Chen, Y. S. Xu, Green Energy Environ. 2021, 6, 715; d) P. Zhu, M. Gao, J. Zhang, Z. Wu, R. Wang, Y. Wang, E. R. Waclawik, Z. Zheng, Appl. Catal. B: Environ. 2021, 283, 119640; e) Y. Shi, H. Wang, Z. Wang, C. Liu, M. Shen, T. Wu, L. Wu, J. Energy Chem. 2022, 66, 566; f) S. Lv, H. Liu, J. Zhang, Q. Wu, F. Wang, J. Energy Chem. 2022, 73, 259; g) Y. Yamamoto, H. Toda, A. Tanaka, H. Kominami, ChemCatChem 2022, 14, 202101496.
- 7X. Wu, J. Li, S. Xie, P. Duan, H. Zhang, J. Feng, Q. Zhang, J. Cheng, Y. Wang, Chem 2020, 6, 3038.
- 8a) J. Li, M. Li, J. Li, S. Wang, G. Li, X. Liu, Appl. Catal. B: Environ. 2021, 282, 119518; b) M. Zabilskiy, V. L. Sushkevich, M. A. Newton, F. Krumeich, M. Nachtegaal, J. A. van Bokhoven, Angew. Chem., Int. Ed. 2021, 60, 17053; c) S. Zhou, L. Shang, Y. Zhao, R. Shi, G. I. N. Waterhouse, Y. Huang, L. Zheng, T. Zhang, Adv. Mater. 2019, 31, 1900509; d) G. Cheng, A. Jentys, O. Y. Gutiérrez, Y. Liu, Y. Chin, J. A. Lercher, Nat. Catal. 2021, 4, 976; e) Q. Tan, L. Li, Y. Li, Z. Jiang, Y. Ma, Y. Qu, J. Li, Angew. Chem., Int. Ed. 2024, e202400483.
- 9Y. Jian, Y. Meng, J. Li, H. Wu, S. Saravanamurugan, H. Li, J. Environ. Chem. Eng. 2022, 10, 108837.
- 10L. Xiong, H. Qi, S. Zhang, L. Zhang, X. Liu, A. Wang, J. Tang, Adv. Mater. 2023, 35, 2209646.
- 11a) P. She, J. Qin, J. Sheng, Y. Qi, H. Rui, W. Zhang, X. Ge, G. Lu, X. Song, H. Rao, Small 2022, 18, 2105114; b) S. Hanukovich, A. Dang, P. Christopher, ACS Catal. 2019, 9, 3537; c) Z. Tang, Y. Li, K. Zhang, X. Wang, S. Wang, Y. Sun, H. Zhang, S. Li, J. Wang, X. Gao, Z. Hou, L. Shi, Z. Yuan, K. Nie, J. Xie, Z. Yang, Y. Yan, ACS Energy Lett. 2023, 8, 3945.
- 12R. Shen, Y. Liu, H. Wen, X. Wu, G. Han, X. Yue, S. Mehdi, T. Liu, H. Cao, E. Liang, B. Li, Small 2022, 18, 2105588.
- 13Y. Guo, Y. Huang, B. Zeng, B. Han, M. AKRI, M. Shi, Y. Zhao, Q. Li, Y. Su, L. Li, Q. Jiang, Y. T. Cui, L. Li, R. Li, B. Qiao, T. Zhang, Nat. Commun. 2022, 13, 2648.
- 14X. Jiang, Y. Zhang, J. Jiang, Y. Rong, Y. Wang, Y. Wu, C. Pan, J. Phys. Chem. C 2012, 116, 22619.
- 15R. Shen, Y. Liu, H. Zhang, S. Liu, H. Wei, H. Yuan, H. Wen, X. Wu, S. Mehdi, T. Liu, J. Jiang, E. Liang, B. Li, Appl. Catal. B Environ. 2023, 328, 122484.
- 16a) X. Q. Tao, R. Long, D. Wu, Y. G. Hu, G. H. Qiu, Z. M. Qi, B. X. Li, R. B. Jiang, Y. J. Xiong, Small 2020, 16, 2001782; b) Z. Li, L. Leng, X. Lu, M. Zhang, Q. Xu, J. H. Horton, J. Zhu, Nano Res. 2022, 15, 3114.
- 17a) Z. Hou, Y. Lu, Y. Liu, N. Liu, J. Hu, L. Wei, Z. Li, X. Tian, R. Gao, X. Yu, Y. Feng, L. Wu, J. Deng, D. Wang, M. Sui, H. Dai, Y. Li, J. Am. Chem. Soc. 2023, 145, 15869; b) V. Muravev, G. Spezzati, Y. Su, A. Parastaev, F. Chiang, A. Longo, C. Escudero, N. Kosinov, E. J. M. Hensen, Nat. Catal. 2021, 4, 469; c) Y. Liu, B. Wang, Q. Fu, W. Liu, Y. Wang, L. Gu, D. Wang, Y. Li, Angew. Chem., Int. Ed. 2021, 66, 22522.
- 18a) X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev. 2016, 45, 2603; b) C. Xu, P. R. Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Chem. Soc. Rev. 2019, 48, 3868; c) C. Wu, N. Corrigan, C. Lim, W. Liu, G. Miyake, C. Boyer, Chem. Rev. 2022, 122, 5476.
- 19a) Y. Meng, Y. Jian, J. Li, H. Wu, H. Zhang, S. Saravanamurugan, S. Yang, H. Li, Chem. Eng. J. 2023, 452, 139477; b) Y. Zhao, X. Jia, G. I. N. Waterhouse, L. Z. Wu, C. H. D. Tung, T. Z. O'Hare, Adv. Energy Mater. 2016, 6, 1501974; c) Y. Meng, J. Huang, J. Li, Y. Jian, S. Yang, H. Li, Green Chem. 2023, 25, 4453.
- 20W. Qiao, X. Fan, W. Liu, F. N. Khan, D. Zhang, F. Han, H. Yue, Y. Li, N. Dimitratos, S. Albonetti, X. Wen, Y. Yang, F. Besenbacher, Y. Li, H. Niemantsverdriet, H. Lin, R. Su, J. Am. Chem. Soc. 2023, 145, 5353.
- 21a) L. Myles, R. Gore, M. Špulák, N. Gathergood, S. J. Connon, H. Recyclable, Green Chem. 2010, 12, 1157; b) W. Fang, A. Riisager, Appl. Catal. B Environ. 2021, 298, 120575.
- 22L. Ma, Y. Gao, B. Wei, L. Huang, N. Zhang, Q. Weng, L. Zhang, S. F. Liu, R. Jiang, ACS Catal. 2024, 14, 2775.
- 23a) K. L. MacIntosh, S. K. Beaumont, Top. Catal. 2020, 63, 1446; b) L. Li, P. Wu, W. Li, J. Huang, H. Li, S. Yang, Small Struct. 2024, 5, 2300531; c) R. Bavisotto, N. Hopper, A. Boscoboinik, Q. Owen, W. T. Tysoe, CrystEngComm 2021, 23, 4534.
- 24W. Fang, A. Riisager, Appl. Catal. B Environ. 2021, 298, 120575.
- 25S. Xie, Z. Shen, J. Deng, P. Guo, Q. Zhang, H. Zhang, C. Ma, Z. Jiang, J. Cheng, D. Deng, Y. Wang, Nat. Commun. 2018, 9, 1181.
- 26a) V. Escande, C. H. Lam, P. Coish, P. T. Anastas, Angew. Chem., Int. Ed. 2017, 56, 9561; b) Z. Z. Zhou, M. Liu, L. Lv, C. J. Li, Angew. Chem., Int. Ed. 2018, 57, 2616; c) J. Xu, W. Lin, J. Long, Q. Li, Y. Wang, T. Ma, ACS Sustainable Chem. Eng. 2024, 12, 1343; d) P. Wu, L. Li, H. Li, Z. Fang, Chem. Eng. J. 2024, 490, 151722.