A Long-Life Zinc-Bromine Single-Flow Battery Utilizing Trimethylsulfoxonium Bromide as Complexing Agent
Ming Zhao
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorTao Cheng
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorTianyu Li
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Key Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCongxin Xie
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Key Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Yanbin Yin
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Key Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Dalian, 116023 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xianfeng Li
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Key Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Dalian, 116023 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorMing Zhao
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorTao Cheng
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorTianyu Li
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Key Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCongxin Xie
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Key Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Yanbin Yin
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Key Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Dalian, 116023 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xianfeng Li
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Key Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Dalian, 116023 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Aqueous zinc-bromine single-flow batteries (ZBSFBs) are highly promising for distributed energy storage systems due to their safety, low cost, and relatively high energy density. However, the limited operational lifespan of ZBSFBs poses a significant barrier to their large-scale commercial viability. Here, trimethylsulfoxonium bromide (TMSO), a nonquaternary ammonium salt, is introduced as a bromine complexing agent to extend the cycle life of ZBSFBs by reducing the imbalance of active substances. Benefiting from the strong interaction between TMSO and H2O, the hydrogen evolution reaction is notably suppressed compared with the traditional N-ethyl-N-methyl-pyrrolidinium bromide (MEP) complexing agent, resulting in reduced bromine accumulation at the cathode. The resultant solid polybromide-TMSO complex, featuring rapid electrochemical redox reaction of Br2/Br−, further contributes to reduce the residual bromine. Consequently, the ZBSFB with TMSO demonstrates a longer lifespan of 1500 cycles with a higher average energy efficiency (EE) of ≈81.6% than that with MEP (less than 300 cycles with an average EE of ≈80.2%). This research explores a sulfonium complexing agent and provides a feasible strategy to effectively extend the cycle life of ZBSFBs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401434-sup-0001-SuppMat.docx1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin, Y. Cui, W. Chen, Chem. Rev. 2022, 122, 16610; b) Y. Liu, X. Cui, Y. Cao, G. Li, J. Chen, Y. Wang, ACS Energy Lett. 2023, 8, 3636; c) N. Wang, X. Zhang, Z. Ju, X. Yu, Y. Wang, Y. Du, Z. Bai, S. Dou, G. Yu, Nat. Commun. 2021, 12, 4519; d) S. Chen, Y. Ying, S. Wang, L. Ma, H. Huang, X. Wang, X. Jin, S. Bai, C. Zhi, Angew. Chem., Int. Ed. 2023, 62, 202301467.
- 2a) L. Liu, G. He, M. Wu, G. Liu, H. Zhang, Y. Chen, J. Shen, S. Li, Nat. Energy 2023, 8, 870;
b) Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577;
c) J. Wang, J. Ma, Z. Zhuang, Z. Liang, K. Jia, G. Ji, G. Zhou, H.-M. Cheng, Chem. Rev. 2024, 124, 2839;
d) M. Gao, Z. Wang, D. Gen Lek, Q. Wang, Nano Res. Energy 2023, 2, 9120045;
10.26599/NRE.2023.9120045 Google Scholare) J. Lei, Y. Zhang, Y. Yao, Y. Shi, K. L. Leung, J. Fan, Y.-C. Lu, Nat. Energy 2023, 8, 1355.
- 3a) J.-H. Lee, R. Kim, S. Kim, J. Heo, H. Kwon, J. H. Yang, H.-T. Kim, Energy Environ. Sci. 2020, 13, 2839; b) A. Khor, P. Leung, M. R. Mohamed, C. Flox, Q. Xu, L. An, R. G. A. Wills, J. R. Morante, A. A. Shah, Mater. Today Energy 2018, 8, 80.
- 4a) W. Wu, S. Xu, Z. Lin, L. Lin, R. He, X. Sun, Energy Storage Mater. 2022, 49, 11; b) J. H. Lee, Y. Byun, G. H. Jeong, C. Choi, J. Kwen, R. Kim, I. H. Kim, S. O. Kim, H. T. Kim, Adv. Mater. 2019, 31, 1904524; c) X. Li, N. Li, Z. Huang, Z. Chen, Y. Zhao, G. Liang, Q. Yang, M. Li, Q. Huang, B. Dong, J. Fan, C. Zhi, ACS Nano 2021, 15, 1718.
- 5a) R. Kim, H. G. Kim, G. Doo, C. Choi, S. Kim, J.-H. Lee, J. Heo, H.-Y. Jung, H.-T. Kim, Sci. Rep. 2017, 7, 10503; b) L. Hua, W. Lu, T. Li, P. Xu, H. Zhang, X. Li, Mater. Today Energy 2021, 21, 100763.
- 6a) D. J. Eustace, J. Electrochem. Soc. 1980, 127, 528; b) C. Dai, L. Hu, X. Jin, Y. Wang, R. Wang, Y. Xiao, X. Li, X. Zhang, L. Song, Y. Han, H. Cheng, Y. Zhao, Z. Zhang, F. Liu, L. Jiang, L. Qu, Sci. Adv. 2022, 8, eabo6688; c) L. Hu, C. Dai, Y. Zhu, X. Hou, Z. Liu, X. Geng, H. Wang, J. Chen, N. Sun, Q. Rong, Y. Zhu, X. He, Y. Lin, Energy Environ. Sci. 2024, 17, 5552.
- 7a) Y. Lee, D. Yun, J. Park, G. Hwang, D. Chung, M. Kim, J. Jeon, J. Power Sources 2022, 547, 232007; b) L. Gao, Z. Li, Y. Zou, S. Yin, P. Peng, Y. Shao, X. Liang, iScience 2020, 23, 101348; c) Y. Choi, J. Hwang, K. M. Kim, S. Jana, S. U. Lee, J. Chae, J. Chang, Anal. Chem. 2019, 91, 5850; d) Y. A. Hugo, N. Mazur, W. Kout, F. Sikkema, Z. Borneman, K. Nijmeijer, J. Electrochem. Soc. 2019, 166, A3004; e) K. Cedzynska, Electrochim. Acta 1989, 34, 1439.
- 8a) M. E. Easton, A. J. Ward, T. Hudson, P. Turner, A. F. Masters, T. Maschmeyer, Chem.-Eur. J. 2015, 21, 2961;
b) L. Mann, G. Senges, K. Sonnenberg, H. Haller, S. Riedel, Eur. J. Inorg. Chem. 2018, 28, 3330;
10.1002/ejic.201800404 Google Scholarc) F. B. Alhanash, N. A. Barnes, S. M. Godfrey, R. Z. Khan, R. G. Pritchard, Polyhedron 2013, 65, 102.
- 9Y. Yin, Z. Yuan, X. Li, Phys. Chem. Chem. Phys. 2021, 23, 26070.
- 10a) M. E. Easton, A. J. Ward, B. Chan, L. Radom, A. F. Masters, T. Maschmeyer, Phys. Chem. Chem. Phys. 2016, 18, 7251; b) Y. Wu, P. W. Huang, J. D. Howe, Y. Yan, J. Martinez, A. Marianchuk, Y. Zhang, H. Chen, N. Liu, Angew. Chem., Int. Ed. 2019, 58, 15228.
- 11C. Sourisseau, M. Bee, A. Dworkin, H. Jobic, J. Raman Spectrosc. 1985, 16, 44.
- 12M. G. Neri, L. H. M. Huizar, ECS Trans. 2010, 29, 145.
- 13N. G. Tsierkezos, J. Solution Chem. 2007, 36, 289.
- 14a) C.-X. Zhao, J.-N. Liu, N. Yao, J. Wang, D. Ren, X. Chen, B.-Q. Li, Q. Zhang, Angew. Chem., Int. Ed. 2021, 60, 15281; b) Q. Zou, Z. Liang, G.-Y. Du, C.-Y. Liu, E. Y. Li, Y.-C. Lu, J. Am. Chem. Soc. 2018, 140, 10740.
- 15a) X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao, H. Liang, H. Wang, D. Chao, F. Wang, Y. Qiao, H. Zhou, S.-G. Sun, Joule 2023, 7, 1145; b) S. D. Pu, B. Hu, Z. Li, Y. Yuan, C. Gong, Z. Ning, C. Chau, S. Yang, S. Zhang, L. Pi, Y. T. Tang, J. Yue, T. J. Marrow, X. Gao, P. G. Bruce, A. W. Robertson, Joule 2023, 7, 366.
- 16M. Qiu, P. Sun, K. Han, Z. Pang, J. Du, J. Li, J. Chen, Z.-L. Wang, W. Mai, Nat. Commun. 2023, 14, 601.
- 17K. Roy, A. Rana, T. K. Ghosh, J. N. Heil, S. Roy, K. J. Vannoy, B. M. Tackett, M. Chen, J. E. Dick, Adv. Energy Mater. 2024, 14, 2303998.
- 18a) Y.-H. Wang, S. Zheng, W.-M. Yang, R.-Y. Zhou, Q.-F. He, P. Radjenovic, J.-C. Dong, S. Li, J. Zheng, Z.-L. Yang, G. Attard, F. Pan, Z.-Q. Tian, J.-F. Li, Nature 2021, 600, 81; b) S. Saha, A. Verma, K. Bandyopadhyay, J. Raman Spectrosc. 2022, 53, 1722.
- 19L. Zhang, H. Zhang, Q. Lai, X. Li, Y. Cheng, J. Power Sources 2013, 227, 41.