From Optical Fiber Communications to Bioimaging: Wavelength Division Multiplexing Technology for Simplified in vivo Large-depth NIR-IIb Fluorescence Confocal Microscopy
Xuanjie Mou
State Key Laboratory of Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Zhejiang, 310058 China
Search for more papers by this authorTianxiang Wu
State Key Laboratory of Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Zhejiang, 310058 China
Search for more papers by this authorYunlong Zhao
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorMubin He
State Key Laboratory of Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Zhejiang, 310058 China
Search for more papers by this authorYalun Wang
School of Information and Electronic Engineering, Zhejiang Gongshang University, Zhejiang, 310058 China
Search for more papers by this authorCorresponding Author
Mingxi Zhang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jun Qian
State Key Laboratory of Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Zhejiang, 310058 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXuanjie Mou
State Key Laboratory of Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Zhejiang, 310058 China
Search for more papers by this authorTianxiang Wu
State Key Laboratory of Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Zhejiang, 310058 China
Search for more papers by this authorYunlong Zhao
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorMubin He
State Key Laboratory of Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Zhejiang, 310058 China
Search for more papers by this authorYalun Wang
School of Information and Electronic Engineering, Zhejiang Gongshang University, Zhejiang, 310058 China
Search for more papers by this authorCorresponding Author
Mingxi Zhang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jun Qian
State Key Laboratory of Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Zhejiang, 310058 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Near-infrared II (NIR-II, 900–1880 nm) fluorescence confocal microscopy offers high spatial resolution and extensive in vivo imaging capabilities. However, conventional confocal microscopy requires precise pinhole positioning, posing challenges due to the small size of the pinhole and invisible NIR-II fluorescence. To simplify this, a fiber optical wavelength division multiplexer (WDM) replaces dichroic mirrors and traditional pinholes for excitation and fluorescence beams, allowing NIR-IIb (1500–1700 nm) fluorescence and excitation light to be coupled into the same optical fiber. This streamlined system seamlessly integrates key components—excitation light, detector, and scanning microscopy—via optical fibers. Compared to traditional NIR-II confocal systems, the fiber optical WDM configuration offers simplicity and ease of adjustment. Notably, this simplified system successfully achieves optical sectioning imaging of mouse cerebral blood vessels up to 1000 µm in depth. It can discern tiny blood vessels (diameter: 4.57 µm) at 800 µm depth with a signal-to-background ratio (SBR) of 5.34. Additionally, it clearly visualizes liver vessels, which are typically challenging to image, down to a depth of 300 µm.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401426-sup-0001-SuppMat.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Cai, L. Zhu, M. Wang, A. W. Roe, W. Xi, J. Qian, Theranostics 2020, 10, 4265.
- 2H. Wan, J. Yue, S. Zhu, T. Uno, X. Zhang, Q. Yang, K. Yu, G. Hong, J. Wang, L. Li, Z. Ma, H. Gao, Y. Zhong, J. Su, A. L. Antaris, Y. Xia, J. Luo, Y. Liang, H. Dai, Nat. Commun. 2018, 9, 1171.
- 3L. Chu, S. Wang, K. Li, W. Xi, X. Zhao, J. Qian, Biomed. Opt. Express 2014, 5, 4076.
- 4J. J. Lochhead, E. I. Williams, E. S. Reddell, E. Dorn, P. T. Ronaldson, T. P. Davis, CellsCells 2023, 12, 645.
- 5S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, H. Dai, Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 962.
- 6W. Yu, B. Guo, H. Zhang, J. Zhou, X. Yu, L. Zhu, D. Xue, W. Liu, X. Sun, J. Qian, Sci. Bull. 2019, 64, 410.
- 7F. Xia, M. Gevers, A. Fognini, A. T. Mok, B. Li, N. Akbari, I. E. Zadeh, J. Qin-Dregely, C. Xu, ACS Photonics 2021, 8, 2800.
- 8O. Renaud, P. Herbomel, K. Kissa, Nat. Protoc. 2011, 6, 1897.
- 9J. A. Panzer, Y. Song, R. J. Balice-Gordon, J. Neurosci. 2006, 26, 934.
- 10C. Quentin, R. Gerasimaitė, A. Freidzon, L. S. Atabekyan, G. Lukinavičius, V. N. Belov, G. Y. Mitronova, MoleculesMolecules 2021, 26, 2997.
- 11J. G. P. Lingg, T. S. Bischof, B. A. Arús, E. D. Cosco, E. M. Sletten, C. J. Rowlands, O. T. Bruns, A. Chmyrov, Laser Photonics Rev. 2023, 17, 2300292.
- 12F. Wang, F. Ren, Z. Ma, L. Qu, R. Gourgues, C. Xu, A. Baghdasaryan, J. Li, I. E. Zadeh, J. W. N. Los, A. Fognini, J. Qin-Dregely, H. Dai, Nat. Nanotechnol. 2022, 17, 653.
- 13G. Begum, A. Dube, P. G. Joshi, P. K. Gupta, N. B. Joshi, J. Photochem. Photobiol., B 2009, 95, 177.
- 14Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Ying, S. Chen, J. Zhou, X. Fan, D. Zhang, S. Li, M. Zhang, J. Qian, Light Sci Appl 2021, 10, 197.
- 15T. Yan, X. Wang, S. Liu, D. Fan, X. Xu, Q. Zeng, H. Xie, X. Yang, S. Zhu, X. Ma, Z. Yuan, X. Chen, Small Methods 2022, 6, 2201105.
- 16J. Zhou, T. Wu, R. Chen, L. Zhu, H. Zhang, Y. Li, L. Chen, J. Qian, J. Innov. Opt. Health Sci. 2024, 17, 2350025.
- 17X. Yu, Z. Feng, Z. Cai, M. Jiang, D. Xue, L. Zhu, Y. Zhang, J. Liu, B. Que, W. Yang, W. Xi, D. Zhang, J. Qian, G. Li, J. Mater. Chem. B 2019, 7, 6623.
- 18T. Dabbs, M. Glass, Appl. Opt. 1992, 31, 705.
- 19P. M. Delaney, M. R. Harris, R. G. King, Appl. Opt. 1994, 33, 573.
- 20F. Helmchen, Experiment. Physiol. 2002, 87, 737.
- 21H. K. Lee, J. Choo, G. Shin, J. Kim, Sensors 2020, 20, 4218.
- 22H. K. Lee, J. Choo, G. Shin, S. M. Kim, Nucl. Engine. Technol. 2020, 52, 2847.
- 23H. K. Lee, J. Choo, G. Shin, Sensors 2019, 19, 3095.
- 24N. Taengnoi, K. R. H. Bottrill, Y. Hong, Y. Wang, N. K. Thipparapu, J. K. Sahu, P. Petropoulos, D. J. Richardson, Opt. Express 2021, 29, 15345.
- 25R. E. Tench, W. Walasik, J. M. Delavaux, J. Lightwave Technol. 2021, 39, 3546.
- 26J. Zheng, S. Yang, X. Nie, L. Li, J Russ Laser Res 2021, 42, 82.
- 27H. Shaodong, M. Zhijian, Y. Junbo, Z. Min, Y. Peiguang, R. Shuangchen, Opt. Lett. 2021, 46, 5934.
- 28N. Libatique, L. Wang, R. Jain, Opt. Express 2002, 10, 1503.
- 29B. J. Puttnam, R. S. Luís, G. Rademacher, M. Mendez-Astudilio, Y. Awaji, H. Furukawa, in 2021 Optical Fiber Communicat. Conf. Exhibit. (OFC), IEEE, San Francisco, California 2021, p. 1.
- 30P. Hazarika, M. Tan, A. Donodin, I. Phillips, P. Harper, M. J. Li, W. Forysiak, in Optical Fiber Communicat. Conf. (OFC) 2022, Optica Publishing Group, San Diego, California 2022, p. Tu3E2.
- 31X. Chen, X. Fang, F. Yang, F. Zhang, J. Lightwave Technol. 2022, 40, 5385.
- 32S. Escobar-Landero, X. Zhao, D. L. Gac, A. Lorences-Riesgo, T. Viret-Denaix, Q. Guo, L. Gan, S. Li, S. Cao, X. Xiao, I. Demirtzioglou, N. E. Dahdah, A. Gallet, S. Yu, H. Hafermann, L. Godard, R. Brenot, Y. Frignac, G. Charlet, J. Lightwave Technol. 2023, 41, 3668.
- 33T. B. Ren, W. Xu, W. Zhang, X. X. Zhang, Z. Y. Wang, Z. Xiang, L. Yuan, X. B. Zhang, J. Am. Chem. Soc. 2018, 140, 7716.
- 34M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. W. Pang, H. Dai, Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 6590.
- 35B. Huang, J. Hu, H. Li, M. Y. Luo, S. Chen, M. Zhang, Z. J. Sun, R. Cui, ACS Appl. Bio Mater. 2020, 3, 1636.
- 36G. T. Yu, M. Y. Luo, H. Li, S. Chen, B. Huang, Z. J. Sun, R. Cui, M. Zhang, ACS Nano 2019, 13, 12830.
- 37H. Li, M. Wang, B. Huang, S. W. Zhu, J. J. Zhou, D. R. Chen, R. Cui, M. Zhang, Z. J. Sun, Nat. Commun. 2021, 12, 7149.
- 38R. Chen, S. Peng, Q. Xia, T. Wu, J. Zheng, H. Qin, J. Qian, J. Biophoton. 2024, 17, e202300477.
- 39H. Wang, X. Liang, G. Gravot, C. A. Thorling, D. H. G. Crawford, Z. P. Xu, X. Liu, M. S. Roberts, J. Biophoton. 2017, 10, 46.