Facile Growth of h-BN Films by Using Surface-Activated h-BN Powders as Precursors
Chen Chen
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorQiang Wang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorZongyuan Zhang
Center of High Magnetic Fields and Free Electron Lasers, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorZhibo Liu
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorCorresponding Author
Chuan Xu
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
E-mail: [email protected]
Search for more papers by this authorWencai Ren
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorChen Chen
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorQiang Wang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorZongyuan Zhang
Center of High Magnetic Fields and Free Electron Lasers, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorZhibo Liu
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorCorresponding Author
Chuan Xu
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
E-mail: [email protected]
Search for more papers by this authorWencai Ren
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorAbstract
Atomically thick hexagonal boron nitride (h-BN) films have gained increasing interest, such as nanoelectronics and protection coatings. Chemical vapor deposition (CVD) has been proven to be an efficient method for synthesizing h-BN thin films, but its precursors are still limited. Here, it is reported that a novel and easily available precursor, surface-activated h-BN (As-hBN), with NH3/N2 as an additional nitrogen source is used for CVD growth of monolayer h-BN films on the Cu foils. The as-grown h-BN films can significantly enhance the anti-oxidation ability of copper. Molecular dynamics simulations reveal that the reactivity of the As-hBN precursors is attributed to the decomposition of unstable BO3 and O-terminal edges on the surface under H2 atmosphere. This method provides a more reliable approach for fabricating h-BN films.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401422-sup-0001-SuppMat.docx4.5 MB | Supporting Information |
smtd202401422-sup-0002-VideoS1.avi3.8 MB | Supplemental Video 1 |
smtd202401422-sup-0003-VideoS2.avi6 MB | Supplemental Video 2 |
smtd202401422-sup-0004-VideoS3.avi6.3 MB | Supplemental Video 3 |
smtd202401422-sup-0005-VideoS4.avi3.6 MB | Supplemental Video 4 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. T. Tran, K. Bray, M. J. Ford, M. Toth, I. Aharonovich, Nat. Nanotechnol. 2016, 11, 37.
- 2Q. Li, Q. Wu, J. Gao, T. Wei, J. Sun, H. Hong, Z. Dou, Z. Zhang, M. H. Rümmeli, P. Gao, J. Yan, J. Wang, J. Li, Y. Zhang, Z. Liu, Adv. Mater. Interfaces. 2018, 5, 1800662.
- 3C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Nat. Nanotechnol. 2010, 5, 722.
- 4X. Wu, R. Ge, P. A. Chen, H. Chou, Z. Zhang, Y. Zhang, S. Banerjee, M. H. Chiang, J. C. Lee, D. Akinwande, Adv. Mater. 2019, 31, 1806790.
- 5X. Wang, M. Hossain, Z. Wei, L. Xie, Nanotechnology. 2019, 30, 034003.
- 6Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J. C. Idrobo, J. Jung, A. H. MacDonald, R. Vajtai, J. Lou, P. M. Ajayan, Nat. Commun. 2013, 4, 2541.
- 7R. Wang, M. Huang, J. Hou, S. Zhou, K. Mei, X. Yu, M. Wu, ACS Appl. Eng. Mater. 2023, 1, 1408.
- 8K. Zuo, X. Zhang, X. Huang, E. F. Oliveira, H. Guo, T. Zhai, W. Wang, P. J. J. Alvarez, M. Elimelech, P. M. Ajayan, J. Lou, Q. Li, Nat. Commun. 2022, 13, 4523.
- 9G. Cassabois, P. Valvin, B. Gil, Nat. Photonics. 2016, 10, 262.
- 10J. Li, J. Wang, X. Zhang, C. Elias, G. Ye, D. Evans, G. Eda, J. M. Redwing, G. Cassabois, B. Gil, P. Valvin, R. He, B. Liu, J. H. Edgar, ACS Nano. 2021, 15, 7032.
- 11J. Chen, G. Wang, J. Meng, Y. Cheng, Z. Yin, Y. Tian, J. Huang, S. Zhang, J. Wu, X. Zhang, ACS Appl. Mater. Interfaces. 2022, 14, 7004.
- 12C. Zhang, J. Tan, Y. Pan, X. Cai, X. Zou, H.-M. Cheng, B. Liu, Natl. Sci. Rev. 2020, 7, 324.
- 13Z. Wang, X. Yan, Q. Hou, Y. Liu, X. Zeng, Y. Kang, W. Zhao, X. Li, S. Yuan, R. Qiu, M. H. Uddin, R. Wang, Y. Xia, M. Jian, Y. Kang, L. Gao, S. Liang, J. Z. Liu, H. Wang, X. Zhang, Nat. Commun. 2023, 14, 236.
- 14D. Steiner, F. Mittendorfer, E. Bertel, ACS Nano. 2019, 13, 7083.
- 15J. S. Lee, S. H. Choi, S. J. Yun, Y. I. Kim, S. Boandoh, J.-H. Park, B. G. Shin, H. Ko, S. H. Lee, Y.-M. Kim, Y. H. Lee, K. K. Kim, S. M. Kim, Science. 2018, 362, 817.
- 16L. Wang, X. Xu, L. Zhang, R. Qiao, M. Wu, Z. Wang, S. Zhang, J. Liang, Z. Zhang, Z. Zhang, W. Chen, X. Xie, J. Zong, Y. Shan, Y. Guo, M. Willinger, H. Wu, Q. Li, W. Wang, P. Gao, S. Wu, Y. Zhang, Y. Jiang, D. Yu, E. Wang, X. Bai, Z. J. Wang, F. Ding, K. Liu, Nature. 2019, 570, 91.
- 17T.-A. Chen, C.-P. Chuu, C.-C. Tseng, C.-K. Wen, H. P. Wong, S. Pan, R. Li, T.-A. Chao, W.-C. Chueh, Y. Zhang, Q. Fu, B. I. Yakobson, W.-H. Chang, L.-J. Li, Nature. 2020, 579, 219.
- 18K. Y. Ma, L. Zhang, S. Jin, Y. Wang, S. I. Yoon, H. Hwang, J. Oh, D. S. Jeong, M. Wang, S. Chatterjee, G. Kim, A. R. Jang, J. Yang, S. Ryu, H. Y. Jeong, R. S. Ruoff, M. Chhowalla, F. Ding, H. S. Shin, Nature. 2022, 606, 88.
- 19F. Hui, M. A. Villena, W. Fang, A.-Y. Lu, J. Kong, Y. Shi, X. Jing, K. Zhu, M. Lanza, 2D Mater. 2018, 5, 031011.
- 20G. Lu, T. Wu, Q. Yuan, H. Wang, H. Wang, F. Ding, X. Xie, M. Jiang, Nat. Commun. 2015, 6, 6160.
- 21J. Li, Z. Hu, Y. Yi, M. Yu, X. Li, J. Zhou, J. Yin, S. Wu, W. Guo, Small. 2019, 15, 1805188.
- 22R. Jiang, Z. Shi, W. Zhao, B. Gao, T. Wu, Q. Yuan, J. Phys. Chem. Lett. 2020, 11, 8511.
- 23Y. Uchida, K. Kawahara, S. Fukamachi, H. Ago, ACS Appl. Electron. Mater. 2020, 2, 3270.
- 24I. Vlassiouk, S. Smirnov, A. Puretzky, O. Olunloyo, D. B. Geohegan, O. Dyck, A. R. Lupini, R. R. Unocic, H. M. Meyer, K. Xiao, D. Briggs, N. Lavrik, J. Keum, E. Cakmak, S. B. Harris, M. Checa, L. Collins, J. Lasseter, R. Emery, J. Rayle, P. D. Rack, Y. Stehle, P. Chaturvedi, P. R. Kidambi, G. Gu, I. Ivanov, Adv. Mater. Interfaces. 2023, 11, 2300704.
- 25S. Fukamachi, P. Solís-Fernández, K. Kawahara, D. Tanaka, T. Otake, Y.-C. Lin, K. Suenaga, H. Ago, Nat. Electron. 2023, 6, 126.
- 26U. B. Demirci, Int. J. Hydrogen Energy. 2017, 42, 9978.
- 27M. Chandra, Q. Xu, J. Power Sources. 2006, 159, 855.
- 28J.-S. Li, C.-R. Zhang, B. Li, F. Cao, S.-Q. Wang, Inorg. Chim. Acta. 2011, 366, 173.
- 29Z. Shi, X. Wang, Q. Li, P. Yang, G. Lu, R. Jiang, H. Wang, C. Zhang, C. Cong, Z. Liu, T. Wu, H. Wang, Q. Yu, X. Xie, Nat. Commun. 2020, 11, 849.
- 30Y. Zhao, J. Ye, H. Wang, F. Zhang, M. Sun, B. Yu, J. Wang, Y. Liu, X. Shan, X. Bai, W. Wang, J. Phys. Chem. Lett. 2021, 12, 9475.
- 31V. O. Shevelev, K. A. Bokai, O. Y. Vilkov, A. A. Makarova, D. Y. Usachov, Nanotechnology. 2019, 30, 234004.
- 32J. C. Koepke, J. D. Wood, Y. Chen, S. W. Schmucker, X. Liu, N. N. Chang, L. Nienhaus, J. W. Do, E. A. Carrion, J. Hewaparakrama, A. Rangarajan, I. Datye, R. Mehta, R. T. Haasch, M. Gruebele, G. S. Girolami, E. Pop, J. W. Lyding, Chem. Mater. 2016, 28, 4169.
- 33S. Roy, X. Zhang, A. B. Puthirath, A. Meiyazhagan, S. Bhattacharyya, M. M. Rahman, G. Babu, S. Susarla, S. K. Saju, M. K. Tran, L. M. Sassi, M. A. S. R. Saadi, J. Lai, O. Sahin, S. M. Sajadi, B. Dharmarajan, D. Salpekar, N. Chakingal, A. Baburaj, X. Shuai, A. Adumbumkulath, K. A. Miller, J. M. Gayle, A. Ajnsztajn, T. Prasankumar, V. V. J. Harikrishnan, V. Ojha, H. Kannan, A. Z. Khater, Z. Zhu, et al., Adv. Mater. 2021, 33, 2101589.
- 34Z. S. Zhu, J. C. You, D. Q. Zhu, G. S. Jiang, S. B. Zhan, J. Wen, Q. S. Xia, Mater. Res. Express. 2021, 8, 045008.
- 35M. H. Chou, S. B. Liu, C. Y. Huang, S. Y. Wu, C.-L. Cheng, Appl. Surf. Sci. 2008, 254, 7539.
- 36A. Singhal, M. R. Pai, R. Rao, K. T. Pillai, I. Lieberwirth, A. K. Tyagi, Eur. J. Inorg. Chem. 2013, 2013, 2640.
- 37X. Li, Y. Long, L. Ma, J. Li, J. Yin, W. Guo, 2D Mater. 2021, 8, 034002.
- 38M. Scardamaglia, V. Boix, G. D'Acunto, C. Struzzi, N. Reckinger, X. Chen, A. Shivayogimath, T. Booth, J. Knudsen, Carbon. 2021, 171, 610.
- 39L. G. Mena, K. L. Hohn, J. Mater. Sci. 2021, 56, 7298.
- 40T. Zhang, W. G. Fahrenholtz, S. T. Reis, R. K. Brow, J. Am. Ceram. Soc. 2008, 91, 2564.
- 41Z. Cui, A. J. Oyer, A. J. Glover, H. C. Schniepp, D. H. Adamson, Small. 2014, 10, 2352.
- 42S. Anderson, R. L. Bohon, D. D. Kimpton, J. Am. Ceram. Soc. 1955, 38, 370.
- 43T. Sainsbury, A. Satti, P. May, Z. Wang, I. McGovern, Y. K. Gun'ko, J. Coleman, J. Am. Ceram. Soc. 2012, 134, 18758.
- 44C. Dai, D. Popple, C. Su, J. H. Park, K. Watanabe, T. Taniguchi, J. Kong, A. Zettl, Commun. Chem. 2023, 6, 108.
- 45J. Hafner, Comput. Phys. Commun. 2007, 177, 6.
- 46W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
- 47P. E. Blöchl, Phys. Rev. B. 1994, 50, 17953.
- 48J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 49G. Kresse, J. Furthmüller, Phys. Rev. B. 1996, 54, 11169.
- 50S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 51S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- 52S. Nosé, J. Chem. Phys. 1984, 81, 511.