Electrochemical Exfoliation of Large Antioxidative MXene Flakes for Polymeric Fire Safety
Corresponding Author
Dong Wang
College of Textile Science and Engineering, Jiangnan University, Jiangsu, 214122 China
Department of Biomedical Engineering, City University of Hong Kong Kowloon, Hong Kong SAR, 999077 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShuo Shi
Department of Biomedical Engineering, City University of Hong Kong Kowloon, Hong Kong SAR, 999077 China
Search for more papers by this authorQiaoling Luo
College of Textile Science and Engineering, Jiangnan University, Jiangsu, 214122 China
Search for more papers by this authorYupei Su
Department of Biomedical Engineering, City University of Hong Kong Kowloon, Hong Kong SAR, 999077 China
Search for more papers by this authorYuhao Ren
College of Textile Science and Engineering, Jiangnan University, Jiangsu, 214122 China
Search for more papers by this authorJichao Zhang
College of Textile Science and Engineering, Jiangnan University, Jiangsu, 214122 China
Search for more papers by this authorLeqi Lei
Department of Biomedical Engineering, City University of Hong Kong Kowloon, Hong Kong SAR, 999077 China
Search for more papers by this authorYongqian Shi
College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorLishan Fan
School of Textile & Clothing, Yancheng Polytechnic College, Jiangsu, 224005 China
Search for more papers by this authorCorresponding Author
Jinlian Hu
Department of Biomedical Engineering, City University of Hong Kong Kowloon, Hong Kong SAR, 999077 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shaohai Fu
College of Textile Science and Engineering, Jiangnan University, Jiangsu, 214122 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dong Wang
College of Textile Science and Engineering, Jiangnan University, Jiangsu, 214122 China
Department of Biomedical Engineering, City University of Hong Kong Kowloon, Hong Kong SAR, 999077 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShuo Shi
Department of Biomedical Engineering, City University of Hong Kong Kowloon, Hong Kong SAR, 999077 China
Search for more papers by this authorQiaoling Luo
College of Textile Science and Engineering, Jiangnan University, Jiangsu, 214122 China
Search for more papers by this authorYupei Su
Department of Biomedical Engineering, City University of Hong Kong Kowloon, Hong Kong SAR, 999077 China
Search for more papers by this authorYuhao Ren
College of Textile Science and Engineering, Jiangnan University, Jiangsu, 214122 China
Search for more papers by this authorJichao Zhang
College of Textile Science and Engineering, Jiangnan University, Jiangsu, 214122 China
Search for more papers by this authorLeqi Lei
Department of Biomedical Engineering, City University of Hong Kong Kowloon, Hong Kong SAR, 999077 China
Search for more papers by this authorYongqian Shi
College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorLishan Fan
School of Textile & Clothing, Yancheng Polytechnic College, Jiangsu, 224005 China
Search for more papers by this authorCorresponding Author
Jinlian Hu
Department of Biomedical Engineering, City University of Hong Kong Kowloon, Hong Kong SAR, 999077 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shaohai Fu
College of Textile Science and Engineering, Jiangnan University, Jiangsu, 214122 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Large-size MXene flakes have drawn growing attention due to their fascinating properties, which inevitably suffer from the low yield and weak oxidation resistance. Herein, an electrochemical exfoliation approach is proposed to achieve a high recording yield of 87% for preparing large antioxidative MXene flakes with an average lateral size of 8.3 µm, which combines the etching, electrolyte intercalation, interlay expansion, and short-time sonication. Moreover, the MXene flakes can keep stable for over three months in the presence of water and oxygen, and even have good stability over 500 °C under an air atmosphere, ascribed to the protection of the surface electrolyte layer. Combined with bacterial cellulose, the MXene can serve as an intelligent resistance-type sensor for contact/non-contact fire alarm, and further integrate with IoT for remote fire detection and warning within 1 s. In addition, the MXene significantly improves the flame-retardant properties of indoor textiles and household materials, owing to the large thermostable 2D barriers to restrain heat and mass transfer. This work establishes an innovative and efficient method to prepare the large antioxidative MXene flakes in high yield for practical usage and extends its application to polymeric fire safety.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smtd202401383-sup-0001-SuppMat.docx11.3 MB | Supporting Information |
smtd202401383-sup-0002-MovieS1.mp428.9 MB | Supplemental Movie 1 |
smtd202401383-sup-0003-MovieS2.mp420.9 MB | Supplemental Movie 2 |
smtd202401383-sup-0004-MovieS3.mp41.6 MB | Supplemental Movie 3 |
smtd202401383-sup-0005-MovieS4.mp49.5 MB | Supplemental Movie 4 |
smtd202401383-sup-0006-MovieS5.mp420.5 MB | Supplemental Movie 5 |
smtd202401383-sup-0007-MovieS6.mp418.5 MB | Supplemental Movie 6 |
smtd202401383-sup-0008-MovieS7.mp45 MB | Supplemental Movie 7 |
smtd202401383-sup-0009-MovieS8.mp417 MB | Supplemental Movie 8 |
smtd202401383-sup-0010-MovieS9.mp418.1 MB | Supplemental Movie 9 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) T. Li, L. Yao, Q. Liu, J. Gu, R. Luo, J. Li, X. Yan, W. Wang, P. Liu, B. Chen, Angew. Chem., Int. Ed. 2018, 57, 6115; b) S. Yang, P. Zhang, F. Wang, A. G. Ricciardulli, M. R. Lohe, P. W. Blom, X. Feng, Angew. Chem., Int. Ed. 2018, 130, 15717.
- 2a) X. Che, W. Zhang, L. Long, X. Zhang, D. Pei, M. Li, C. Li, ACS Nano 2022, 16, 8881; b) Q. Zhang, R. Fan, W. Cheng, P. Ji, J. Sheng, Q. Liao, H. Lai, X. Fu, C. Zhang, H. Li, Adv. Sci. 2022, 9, 2202748.
- 3a) J. Xu, T. Peng, Q. Zhang, H. Zheng, H. Yu, S. Shi, ACS Appl. Nano Mater. 2022, 5, 8794. b) X. He, C. Cui, Y. Chen, L. Zhang, X. Sheng, D. Xie, Adv. Funct. Mater. 2024, 2409675.
- 4F. Han, S. Luo, L. Xie, J. Zhu, W. Wei, X. Chen, F. Liu, W. Chen, J. Zhao, L. Dong, ACS Appl. Mater. Interfaces 2019, 11, 8443.
- 5a) M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Chem. Mater. 2017, 29, 7633. b) Q. Weng, L. Zhang, X. Sheng, D. Xie, J. Mater. Sci. Technol. 2025, 215, 22.
- 6a) Z. Wang, B. Mao, Q. Wang, J. Yu, J. Dai, R. Song, Z. Pu, D. He, Z. Wu, S. Mu, Small 2018, 14, 1704332; b) S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai, J. Xu, T. Yan, M. Wu, Z. Xu, H. Bao, Adv. Mater. 2019, 31, 1905099; c) Y. Chao, R. Jalili, Y. Ge, C. Wang, T. Zheng, K. Shu, G. G. Wallace, Adv. Funct. Mater. 2017, 27, 1700234; d) N. Wu, W. Yang, S. Che, L. Sun, H. Li, G. Ma, Y. Sun, H. Liu, X. Wang, Y. Li, Compos. Part A-Appl. S. 2023, 164, 107266; e) M. Z. Seyedin, J. M. Razal, P. C. Innis, R. Jalili, G. G. Wallace, Adv. Funct. Mater. 2015, 25, 94.
- 7A. Lipatov, M. Alhabeb, M. R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, Adv. Electron. Mater. 2016, 2, 1600255.
- 8J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin, P. A. Lynch, S. Qin, M. Han, W. Yang, J. Liu, Adv. Mater. 2020, 32, 2001093.
- 9a) M. Shekhirev, J. Busa, C. E. Shuck, A. Torres, S. Bagheri, A. Sinitskii, Y. Gogotsi, ACS Nano 2022, 16, 13695. b) Y. Fan, J. Wu, L. Zhang, X. Sheng, Ind. Eng. Chem. Res. 2024, 63, 10637.
- 10X. Huang, P. Wu, Adv. Funct. Mater. 2020, 30, 1910048.
- 11a) H. Lin, Y. Wang, S. Gao, Y. Chen, J. Shi, Adv. Mater. 2018, 30, 1703284; b) Q. Wang, X. Pan, X. Wang, H. Gao, Y. Chen, L. Chen, Y. Ni, S. Cao, X. Ma, Compos. Part B-Eng. 2020, 197, 108187; c) K. Maleski, C. E. Ren, M.-Q. Zhao, B. Anasori, Y. Gogotsi, ACS Appl. Mater. Interfaces 2018, 10, 24491.
- 12Y. Sun, F. Yi, R. H. Li, X. Min, H. Qin, S. Q. Cheng, Y. Liu, Angew. Chem., Int. Ed. 2022, 61, 202200482.
- 13S. Bagheri, J. Abourahma, H. Lu, N. S. Vorobeva, S. Luo, A. Gruverman, A. Sinitskii, Nanoscale 2023, 15, 1248.
- 14a) A. Shahzad, K. Rasool, W. Miran, M. Nawaz, J. Jang, K. A. Mahmoud, D. S. Lee, ACS Sustainable Chem. Eng. 2017, 5, 11481; b) M. Ghidiu, S. Kota, V. Drozd, M. W. Barsoum, Sci. Adv. 2018, 4, eaao6850.
- 15A. Sarycheva, Y. Gogotsi, Chem. Mater. 2020, 32, 3480.
- 16Y. Cheng, L. Wang, Y. Song, Y. Zhang, J. Mater. Chem. A 2019, 7, 15862.
- 17J. Zhang, J. Ge, Y. Si, F. Zhang, J. Yu, L. Liu, B. Ding, Nanoscale Horiz. 2019, 4, 1174.
- 18X. Zhao, A. Vashisth, E. Prehn, W. Sun, S. A. Shah, T. Habib, Y. Chen, Z. Tan, J. L. Lutkenhaus, M. Radovic, Matter 2019, 1, 513.
- 19G.-Y. Gou, M. L. Jin, B.-J. Lee, H. Tian, F. Wu, Y.-T. Li, Z.-Y. Ju, J.-M. Jian, X.-S. Geng, J. Ren, ACS Nano 2019, 13, 12613.
- 20a) Y. Feng, M. Zhang, H. Yan, Y. Zhang, R. Guo, H. Wang, Ceram. Int. 2022, 48, 9518; b) W. Wu, J. Xu, X. Tang, P. Xie, X. Liu, J. Xu, H. Zhou, D. Zhang, T. Fan, Chem. Mater. 2018, 30, 5932; c) J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng, X. Yang, Z. Liu, R. Ma, T. Sasaki, F. Geng, Angew. Chem., Int. Ed. 2016, 128, 14789; d) Y. Li, Y. Chen, Y. Liu, C. Zhang, H. Qi, Carbohyd. Polym. 2021, 274, 118652.
- 21D. Wang, H. Peng, Y. Wu, L. Zhang, M. Li, M. Liu, Y. Zhu, A. Tian, S. Fu, ACS Sustainable Chem. Eng. 2020, 8, 4331.
- 22S. Wang, H. Ning, F. Liu, N. Hu, H. Zhang, R. Zou, J. Wen, K. Huang, X. Wu, Z. Song, Adv. Mater. Technol. 2022, 7, 2200010.
- 23a) Y. Mao, D. Wang, J. Hu, S. Fu, Chem. Eng. J. 2023, 454, 140161; b) B. Wang, X. Lai, H. Li, C. Jiang, J. Gao, X. Zeng, ACS Appl. Mater. Interfaces 2021, 13, 23020.
- 24D. Wang, L. Song, K. Zhou, X. Yu, Y. Hu, J. Wang, J. Mater. Chem. A 2015, 3, 14307.
- 25a) J. Wang, Y. Cao, Z. Wang, Y. Zhao, C. He, F. Zhao, C. Han, S. Yu, J. Energy Chem. 2024, 89, 471; b) J. Yu, Z. Cui, J. Lu, J. Zhao, Y. Zhang, G. Fan, S. Liu, Y. He, Y. Yu, D. Qi, Compos. Part B-Eng. 2021, 224, 109193; c) D. Wang, S. Shi, Y. Mao, L. Lei, S. Fu, J. Hu, Angew. Chem., Int. Ed. 2023, 62, 202310995.
- 26a) C. Liu, W. Wu, Y. Shi, F. Yang, M. Liu, Z. Chen, B. Yu, Y. Feng, Compos. Part B-Eng. 2020, 203, 108486; b) C. Liu, D. Yang, M. Sun, G. Deng, B. Jing, K. Wang, Y. Shi, L. Fu, Y. Feng, Y. Lv, Compos. Commun. 2022, 29, 101055; c) B. Yu, B. Tawiah, L.-Q. Wang, A. C. Y. Yuen, Z.-C. Zhang, L.-L. Shen, B. Lin, B. Fei, W. Yang, A. Li, J. Hazard. Mater. 2019, 374, 110; d) Y. Hai, S. Jiang, C. Zhou, P. Sun, Y. Huang, S. Niu, Dalton Transc. 2020, 49, 5803; e) K. Zhou, K. Gong, F. Gao, L. Yin, Compos. Part A-Appl. Sci. 2022, 157, 106912; f) Y. Yuan, Y.-T. Pan, W. Zhang, M. Feng, N. Wang, D.-Y. Wang, R. Yang, ACS Appl. Mater. Interfaces 2021, 13, 48196. g) H. Jiang, J. Li, Y. Xie, H. Guo, M. He, X. Shi, Y. Mei, X. Sheng, D. Xie, J. Mater. Sci. Technol. 2025, 209, 207.
- 27D. Kim, T. Y. Ko, H. Kim, G. H. Lee, S. Cho, C. M. Koo, ACS Nano 2019, 13, 13818.
- 28a) G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251; b) G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169; c) P. E. Blöchl, Phys. Rev. B 1994, 50, 17953; d) G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 29B. Hammer, L. B. Hansen, J. K. Nørskov, Phys. Rev. B 1999, 59, 7413.
- 30H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- 31S. Grimme, J. Comput. Chem. 2006, 27, 1787.