Robust Plasma-Assisted Growth of 2D Janus Transition Metal Dichalcogenides and Their Enhanced Photoluminescent Properties
Qing Zhu
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorEnzi Chen
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorKezhou Fan
Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, 999077 China
Search for more papers by this authorJunhao Tang
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorRunze Zhan
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorKam Sing Wong
Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, 999077 China
Search for more papers by this authorCorresponding Author
Zefeng Chen
School of Electronic and Information Engineering, South China Normal University, Guangzhou, Guangdong, 510620 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Xi Wan
Engineering Research Center of IoT Technology Applications (Ministry of Education), School of Integrated Circuits, Jiangnan University, Wuxi, 214122 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Kun Chen
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorQing Zhu
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorEnzi Chen
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorKezhou Fan
Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, 999077 China
Search for more papers by this authorJunhao Tang
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorRunze Zhan
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorKam Sing Wong
Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, 999077 China
Search for more papers by this authorCorresponding Author
Zefeng Chen
School of Electronic and Information Engineering, South China Normal University, Guangzhou, Guangdong, 510620 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Xi Wan
Engineering Research Center of IoT Technology Applications (Ministry of Education), School of Integrated Circuits, Jiangnan University, Wuxi, 214122 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Kun Chen
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
Janus transition metal dichalcogenides (TMDs) are a novel class of 2D materials with unique mirror asymmetry. Plasma-assisted synthesis at room temperature is favored for producing Janus TMDs due to its energy efficiency and prevention of alloying. However, current methods require stringent control over growth conditions, risking defects or unintended materials. A robust plasma-assisted (RPA) synthesis strategy is introduced, incorporating a built-in tube with a suitable inner diameter into the plasma-assisted system. This innovation creates a mild, uniform plasma atmosphere, allowing for broader variations in growth parameters without significantly affecting Janus MoSSe's morphology and characteristics. This approach simplifies the synthesis process and enhances the success rate of Janus TMD production. Additionally, methods are explored to enhance the photoluminescence (PL) of Janus MoSSe. Releasing MoSSe from the growth substrate and annealing it removes strain and unintentional doping, improving PL performance. MoSSe on hexagonal boron nitride (h-BN) flakes after annealing shows a 32-fold increase in PL intensity. Bis(trifluoromethane) sulfonimide (TFSI) treatment of MoSSe results in a remarkable 70-fold increase in PL intensity, a 2.5-fold extension in exciton lifetime, and quantum yield (QY) reaching up to ≈31.2%. These findings provide critical insights for optimizing the luminescence properties of 2D Janus materials, advancing Janus optoelectronics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401310-sup-0001-SuppMat.docx24.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M. Y. Chou, X. Zhang, L. J. Li, Nat. Nanotechnol. 2017, 12, 744.
- 2L. Dong, J. Lou, V. B. Shenoy, ACS Nano 2017, 11, 8242.
- 3D. Hajra, R. Sailus, M. Blei, K. Yumigeta, Y. Shen, S. Tongay, ACS Nano 2020, 14, 15626.
- 4K. Zhang, Y. Guo, D. T. Larson, Z. Zhu, S. Fang, E. Kaxiras, J. Kong, S. Huang, ACS Nano 2021, 15, 14394.
- 5Y. Qin, M. Sayyad, A. R. Montblanch, M. S. G. Feuer, D. Dey, M. Blei, R. Sailus, D. M. Kara, Y. Shen, S. Yang, A. S. Botana, M. Atature, S. Tongay, Adv. Mater. 2022, 34, 2106222.
- 6M. Yagmurcukardes, Y. Qin, S. Ozen, M. Sayyad, F. M. Peeters, S. Tongay, H. Sahin, Appl. Phys. Rev. 2020, 7, 011311.
- 7H. Mehdipour, P. Kratzer, Phys. Rev. B 2024, 109, 085425.
- 8A. E. G. Mikkelsen, F. T. Bölle, K. S. Thygesen, T. Vegge, I. E. Castelli, Phys. Rev. Mater. 2021, 5, 014002.
- 9K. Zhang, Y. Guo, Q. Ji, A. Y. Lu, C. Su, H. Wang, A. A. Puretzky, D. B. Geohegan, X. Qian, S. Fang, E. Kaxiras, J. Kong, S. Huang, J. Am. Chem. Soc. 2020, 142, 17499.
- 10A. Kandemir, H. Sahin, Phys. Chem. Chem. Phys. 2018, 20, 17380.
- 11F. Li, W. Wei, H. Wang, B. Huang, Y. Dai, T. Jacob, J. Phys. Chem. Lett. 2019, 10, 559.
- 12R. Peng, Y. Ma, S. Zhang, B. Huang, Y. Dai, J. Phys. Chem. Lett. 2018, 9, 3612.
- 13X. Yang, D. Singh, Z. Xu, Z. Wang, R. Ahuja, J. Mater. Chem. C 2019, 7, 12312.
- 14W.-J. Yin, B. Wen, G.-Z. Nie, X.-L. Wei, L.-M. Liu, J. Mater. Chem. C 2018, 6, 1693.
- 15H. Guo, X. Zhang, G. Lu, Sci. Adv. 2022, 8, eabp9757.
- 16H. Jin, T. Wang, Z. R. Gong, C. Long, Y. Dai, Nanoscale 2018, 10, 19310.
- 17T. Hu, F. Jia, G. Zhao, J. Wu, A. Stroppa, W. Ren, Phys. Rev. B 2018, 97, 235404.
- 18Y. C. Cheng, Z. Y. Zhu, M. Tahir, Europhys. Lett. 2013, 102, 57001.
10.1209/0295-5075/102/57001 Google Scholar
- 19C. Zhang, Y. Nie, S. Sanvito, A. Du, Nano Lett. 2019, 19, 1366.
- 20J. Liang, W. Wang, H. Du, A. Hallal, K. Garcia, M. Chshiev, A. Fert, H. Yang, Phys. Rev. B 2020, 101, 184401.
- 21M. Yagmurcukardes, C. Sevik, F. M. Peeters, Phys. Rev. B 2019, 100, 045415.
- 22J. R. Yuan, Y. M. Yang, Y. Q. Cai, Y. H. Wu, Y. P. Chen, X. H. Yan, L. Shen, Phys. Rev. B 2020, 101, 094420.
- 23J. Shi, H. Xu, C. Heide, C. HuangFu, C. Xia, F. de Quesada, H. Shen, T. Zhang, L. Yu, A. Johnson, F. Liu, E. Shi, L. Jiao, T. Heinz, S. Ghimire, J. Li, J. Kong, Y. Guo, A. M. Lindenberg, Nat. Commun. 2023, 14, 4953.
- 24J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi, J. Lou, ACS Nano 2017, 11, 8192.
- 25H. Li, X. Duan, X. Wu, X. Zhuang, H. Zhou, Q. Zhang, X. Zhu, W. Hu, P. Ren, P. Guo, L. Ma, X. Fan, X. Wang, J. Xu, A. Pan, X. Duan, J. Am. Chem. Soc. 2014, 136, 3756.
- 26Q. Feng, N. Mao, J. Wu, H. Xu, C. Wang, J. Zhang, L. Xie, ACS Nano 2015, 9, 7450.
- 27K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara, A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M. Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami, R. Kumai, Y. Kaneko, Y. Onose, Y. Tokura, Nat. Mater. 2011, 10, 521.
- 28S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, Sci. Rep. 2013, 3, 2657.
- 29Y. C. Lin, C. Liu, Y. Yu, E. Zarkadoula, M. Yoon, A. A. Puretzky, L. Liang, X. Kong, Y. Gu, A. Strasser, H. M. Meyer, 3rd, M. Lorenz, M. F. Chisholm, I. N. Ivanov, C. M. Rouleau, G. Duscher, K. Xiao, D. B. Geohegan, ACS Nano 2020, 14, 3896.
- 30S. M. He, J. Y. Zhuang, C. F. Chen, R. K. Liao, S. T. Lo, Y. F. Lin, C. Y. Su, Small Methods 2024, 1, 2400150 .
- 31J. Zhu, J. H. Park, S. A. Vitale, W. Ge, G. S. Jung, J. Wang, M. Mohamed, T. Zhang, M. Ashok, M. Xue, X. Zheng, Z. Wang, J. Hansryd, A. P. Chandrakasan, J. Kong, T. Palacios, Nat. Nanotechnol. 2023, 18, 456.
- 32Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang, J. Hou, ACS Nano 2011, 5, 3385.
- 33W. H. Chiang, R. M. Sankaran, Adv. Mater. 2008, 20, 4857.
- 34S. J. Yun, G. H. Han, H. Kim, D. L. Duong, B. G. Shin, J. Zhao, Q. A. Vu, J. Lee, S. M. Lee, Y. H. Lee, Nat. Commun. 2017, 8, 2163.
- 35Y. Guo, Y. Lin, K. Xie, B. Yuan, J. Zhu, P. C. Shen, A. Y. Lu, C. Su, E. Shi, K. Zhang, C. HuangFu, H. Xu, Z. Cai, J. H. Park, Q. Ji, J. Wang, X. Dai, X. Tian, S. Huang, L. Dou, L. Jiao, J. Li, Y. Yu, J. C. Idrobo, T. Cao, T. Palacios, J. Kong, Proc. Natl. Acad. Sci. USA 2021, 118, e2106124118.
- 36D. B. Trivedi, G. Turgut, Y. Qin, M. Y. Sayyad, D. Hajra, M. Howell, L. Liu, S. Yang, N. H. Patoary, H. Li, M. M. Petric, M. Meyer, M. Kremser, M. Barbone, G. Soavi, A. V. Stier, K. Muller, S. Yang, I. S. Esqueda, H. Zhuang, J. J. Finley, S. Tongay, Adv. Mater. 2020, 32, 2006320.
- 37H. Suzuki, Y. Liu, M. Misawa, C. Nakano, Y. Wang, R. Nakano, K. Ishimura, K. Tsuruta, Y. Hayashi, Nano Lett. 2023, 23, 4533.
- 38X. Wan, E. Chen, J. Yao, M. Gao, X. Miao, S. Wang, Y. Gu, S. Xiao, R. Zhan, K. Chen, Z. Chen, X. Zeng, X. Gu, J. Xu, ACS Nano 2021, 15, 20319.
- 39T. Zheng, Y. C. Lin, Y. Yu, P. Valencia-Acuna, A. A. Puretzky, R. Torsi, C. Liu, I. N. Ivanov, G. Duscher, D. B. Geohegan, Z. Ni, K. Xiao, H. Zhao, Nano Lett. 2021, 21, 931.
- 40K. Chen, S. Deng, E. Chen, S. Wen, T. Ouyang, X. Wang, R. Zhan, J. Cai, X. Wan, H. Chen, ACS Appl. Mater. Interfaces 2021, 13, 44814.
- 41H. Kim, G. H. Ahn, J. Cho, M. Amani, J. P. Mastandrea, C. K. Groschner, D.-H. Lien, Y. Zhao, J. W. Ager, M. C. Scott, D. C. Chrzan, A. Javey, Sci. Adv. 2019, 5, eaau4728.
- 42M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, 3rd, X. Zhang, E. Yablonovitch, A. Javey, Science 2015, 350, 1065.
- 43D. B. Trivedi, G. Turgut, Y. Qin, M. Y. Sayyad, D. Hajra, M. Howell, L. Liu, S. Yang, N. H. Patoary, H. Li, M. M. Petric, M. Meyer, M. Kremser, M. Barbone, G. Soavi, A. V. Stier, K. Muller, S. Yang, I. S. Esqueda, H. Zhuang, J. J. Finley, S. Tongay, Adv. Mater. 2020, 32, 2006320.
- 44M. M. Petrić, M. Kremser, M. Barbone, Y. Qin, Y. Sayyad, Y. Shen, S. Tongay, J. J. Finley, A. R. Botello-Méndez, K. Müller, Phys. Rev. B 2021, 103, 035414.
- 45X. Wang, Y. Gong, G. Shi, W. L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe, B. K. Tay, P. M. Ajayan, ACS Nano 2014, 8, 5125.
- 46M. Amani, R. A. Burke, X. Ji, P. Zhao, D. H. Lien, P. Taheri, G. H. Ahn, D. Kirya, J. W. Ager 3rd, E. Yablonovitch, J. Kong, M. Dubey, A. Javey, ACS Nano 2016, 10, 6535.
- 47Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, J. Lou, Nat. Commun. 2014, 5, 5246.
- 48M. Amani, M. L. Chin, A. L. Mazzoni, R. A. Burke, S. Najmaei, P. M. Ajayan, J. Lou, M. Dubey, Appl. Phys. Lett. 2014, 104, 203506.
- 49R. Decker, Y. Wang, V. W. Brar, W. Regan, H. Z. Tsai, Q. Wu, W. Gannett, A. Zettl, M. F. Crommie, Nano Lett. 2011, 11, 2291.
- 50M. Kaneda, W. Zhang, Z. Liu, Y. Gao, M. Maruyama, Y. Nakanishi, H. Nakajo, S. Aoki, K. Honda, T. Ogawa, K. Hashimoto, T. Endo, K. Aso, T. Chen, Y. Oshima, Y. Yamada-Takamura, Y. Takahashi, S. Okada, T. Kato, Y. Miyata, ACS Nano 2024, 18, 2772.
- 51Y. P. Varshni, Physica 1967, 34, 149.
- 52S. W. Kim, S. Y. Choi, S. H. Lim, E. B. Ko, S. Kim, Y. C. Park, S. Lee, H. H. Kim, Adv. Funct. Mater. 2023, 34, 2308709.
- 53M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, K. C. Santosh, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, A. Javey, Science 2015, 350, 1065.
- 54S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, J. J. N. Kim, Nanomaterials 2020, 10, 1032.
- 55N. B. Mohamed, F. Wang, H. E. Lim, W. Zhang, S. Koirala, S. Mouri, Y. Miyauchi, K. J. Matsuda, Phys. Status Solidi B 2017, 254, 1600563.
- 56N. B. Mohamed, H. E. Lim, F. Wang, S. Koirala, S. Mouri, K. Shinokita, Y. Miyauchi, K Matsuda, Appl. Phys. Express 2017, 11, 015201.
10.7567/APEX.11.015201 Google Scholar
- 57S. Wang, J. Wang, W. Zhao, F. Giustiniano, L. Chu, I. Verzhbitskiy, J. Zhou Yong, G. Eda, Nano Lett. 2017, 17, 5156.
- 58L. Tao, K. Chen, Z. Chen, W. Chen, X. Gui, H. Chen, X. Li, J. B. Xu, ACS Appl. Mater. Interfaces 2017, 9, 12073.
- 59J. Cai, H. Chen, Y. Ke, S. Deng, ACS Nano 2022, 16, 15016.
- 60H. Yamada, A. Chayahara, Y. Mokuno, J. Appl. Phys. 2007, 101, 063302.
- 61W. Tan, T. A. Grotjohn, Diamond Relat. Mater. 1995, 4, 1145.