Van der Waals Epitaxy of High-Quality Transition Metal Dichalcogenides on Single-Crystal Hexagonal Boron Nitride
Jidong Huang
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Junhua Meng
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHuabo Yang
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorJi Jiang
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorZhengchang Xia
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorSiyu Zhang
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorLibin Zeng
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorZhigang Yin
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Xingwang Zhang
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJidong Huang
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Junhua Meng
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHuabo Yang
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorJi Jiang
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorZhengchang Xia
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorSiyu Zhang
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorLibin Zeng
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorZhigang Yin
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Xingwang Zhang
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Van der Waals (vdW) heterostructures comprising of transition metal dichalcogenides (TMDs) and hexagonal boron nitride (h-BN) are promising building blocks for novel 2D devices. The vdW epitaxy provides a straightforward integration method for fabricating high-quality TMDs/h-BN vertical heterostructures. In this work, the vdW epitaxy of high-quality single-crystal HfSe2 on epitaxial h-BN/sapphire substrates by chemical vapor deposition is demonstrated. The epitaxial HfSe2 layers exhibit a uniform and atomically sharp interface with the underlying h-BN template, and the epitaxial relationship between HfSe2 and h-BN/sapphire is determined to HfSe2 (0001)[110]//h-BN (0001)[100]//sapphire (0001)[100]. Impressively, the full width at half maximum of the rocking curve for the epitaxial HfSe2 layer on single-crystal h-BN is as narrow as 9.6 arcmin, indicating an extremely high degree of out-plane orientation and high crystallinity. Benefitting from the high crystalline quality of HfSe2 epilayers and the weak interfacial scattering of HfSe2/h-BN, the photodetector fabricated from the vdW epitaxial HfSe2 on single-crystal h-BN shows the best performance with an on/off ratio of 1 × 104 and a responsivity up to 43 mA W−1. Furthermore, the vdW epitaxy of other TMDs such as HfS2, ZrS2, and ZrSe2 is also experimentally demonstrated on single-crystal h-BN, suggesting the broad applicability of the h-BN template for the vdW epitaxy.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401296-sup-0001-SuppMat.docx7.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Chhowalla, D. Jena, H. Zhang, Nat. Rev. Mater. 2016, 1, 16052.
- 2S. Das, A. Sebastian, E. Pop, C. J. McClellan, A. D. Franklin, T. Grasser, T. Knobloch, Y. Illarionov, A. V. Penumatcha, J. Appenzeller, Z. Chen, W. Zhu, I. Asselberghs, L. J. Li, U. E. Avci, N. Bhat, T. D. Anthopoulos, R. Singh, Nat. Electron. 2021, 4, 786.
- 3K. P. O'Brien, C. H. Naylor, C. Dorow, K. Maxey, A. V. Penumatcha, A. Vyatskikh, T. Zhong, A. Kitamura, S. Lee, C. Rogan, W. Mortelmans, M. S. Kavrik, R. Steinhardt, P. Buragohain, S. Dutta, T. Tronic, S. Clendenning, P. Fischer, E. S. Putna, M. Radosavljevic, M. Metz, U. Avci, Nat. Commun. 2023, 14, 6400.
- 4G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, L. Colombo, Nat. Nanotechnol. 2014, 9, 768.
- 5W. Zhang, Z. Huang, W. Zhang, Y. Li, Nano Res. 2014, 7, 1731.
- 6C. Yan, C. Gong, P. Wangyang, J. Chu, K. Hu, C. Li, X. Wang, X. Du, T. Zhai, Y. Li, J. Xiong, Adv. Funct. Mater. 2018, 28, 1803305.
- 7J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, D. Wu, F. Liu, Q. Fu, Q. Zeng, C. H. Hsu, C. Yang, L. Lu, T. Yu, Z. Shen, H. Lin, B. I. Yakobson, Q. Liu, K. Suenaga, G. Liu, Z. Liu, Nature 2018, 556, 355.
- 8D. Wang, X. Zhang, G. Guo, S. Gao, X. Li, J. Meng, Z. Yin, H. Liu, M. Gao, L. Cheng, J. You, R. Wang, Adv. Mater. 2018, 30, 1803285.
- 9Y. Tian, Y. Cheng, J. Huang, S. Zhang, H. Dong, G. Wang, J. Chen, J. Wu, Z. Yin, X. Zhang, Nano Res. 2022, 15, 6628.
- 10J. Huang, Y. Tian, Y. Cheng, X. Li, S. Zhang, J. Jiang, J. Chen, G. Wang, J. Li, Z. Yin, X. Zhang, Sci. China Mater. 2023, 66, 1870.
- 11Y. Liu, Y. Huang, X. Duan, Nature 2019, 567, 323.
- 12Z. Zhang, X. Yang, K. Liu, R. Wang, Adv. Sci. 2022, 9, 2105201.
- 13H. Ryu, H. Park, J.-H. Kim, F. Ren, J. Kim, G. H. Lee, S. J. Pearton, Appl. Phys. Rev. 2022, 9, 031305.
- 14J. Kim, C. Bayram, H. Park, C. W. Cheng, C. Dimitrakopoulos, J. A. Ott, K. B. Reuter, S. W. Bedell, D. K. Sadana, Nat. Commun. 2014, 5, 4836.
- 15J. Yu, L. Wang, Z. Hao, Y. Luo, C. Sun, J. Wang, Y. Han, B. Xiong, H. Li, Adv. Mater. 2020, 32, 1903407.
- 16Y. Shi, W. Zhou, A. Y. Lu, W. Fang, Y. H. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L. J. Li, J. C. Idrobo, J. Kong, Nano Lett. 2012, 12, 2784.
- 17J. A. Miwa, M. Dendzik, S. S. Grønborg, M. Bianchi, J. V. Lauritsen, P. Hofmann, S. Ulstrup, ACS Nano 2015, 9, 6502.
- 18Y. C. Lin, C. Y. Chang, R. K. Ghosh, J. Li, H. Zhu, R. Addou, B. Diaconescu, T. Ohta, X. Peng, N. Lu, M. J. Kim, J. T. Robinson, R. M. Wallace, T. S. Mayer, S. Datta, L. J. Li, J. A. Robinson, Nano Lett. 2014, 14, 6936.
- 19F. Ren, B. Liu, Z. Chen, Y. Yin, J. Sun, S. Zhang, B. Jiang, B. Liu, Z. Liu, J. Wang, M. Liang, G. Yuan, J. Yan, T. Wei, X. Yi, J. Wang, Y. Zhang, J. Li, P. Gao, Z. Liu, Z. Liu, Sci. Adv. 2021, 7, eabf5011.
- 20P. K. Mohseni, A. Behnam, J. D. Wood, X. Zhao, K. J. Yu, N. C. Wang, A. Rockett, J. A. Rogers, J. W. Lyding, E. Pop, X. Li, Adv. Mater. 2014, 26, 3755.
- 21J. Zhang, Y. Huang, Z. Tan, T. Li, Y. Zhang, K. Jia, L. Lin, L. Sun, X. Chen, Z. Li, C. Tan, J. Zhang, L. Zheng, Y. Wu, B. Deng, Z. Chen, Z. Liu, H. Peng, Adv. Mater. 2018, 30, 1803194.
- 22X. Han, J. Yu, Z. Li, X. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, H. Li, Y. Zhang, B. Duan, J. Ning, H. Wu, L. Wang, ACS Appl. Electron. Mater. 2022, 4, 5326.
- 23H. Kim, K. Lu, Y. Liu, H. S. Kum, K. S. Kim, K. Qiao, S.-H. Bae, S. Lee, Y. J. Ji, K. H. Kim, H. Paik, S. Xie, H. Shin, C. Choi, J. H. Lee, C. Dong, J. A. Robinson, J.-H. Lee, J.-H. Ahn, G. Y. Yeom, D. G. Schlom, J. Kim, ACS Nano 2021, 15, 10587.
- 24J. H. Park, X. Yang, J. Y. Lee, M. D. Park, S. Y. Bae, M. Pristovsek, H. Amano, D. S. Lee, Chem. Sci. 2021, 12, 7713.
- 25S. Roy, X. Zhang, A. B. Puthirath, A. Meiyazhagan, S. Bhattacharyya, M. M. Rahman, G. Babu, S. Susarla, S. K. Saju, M. K. Tran, L. M. Sassi, M. A. Saadi, J. Lai, O. Sahin, S. M. Sajadi, B. Dharmarajan, D. Salpekar, N. Chakingal, A. Baburaj, X. Shuai, A. Adumbumkulath, K. A. Miller, J. M. Gayle, A. Ajnsztajn, T. Prasankumar, V. V. Harikrishnan, V. Ojha, H. Kannan, A. Z. Khater, Z. Zhu, et al., Adv. Mater. 2021, 33, 2101589.
- 26C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Nat. Nanotechnol. 2010, 5, 722.
- 27L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. Peres, A. H. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, K. S. Novoselov, Nano Lett. 2012, 12, 1707.
- 28J. Zhang, B. Tan, X. Zhang, F. Gao, Y. Hu, L. Wang, X. Duan, Z. Yang, P. Hu, Adv. Mater. 2021, 33, 2000769.
- 29D. Liu, X. Chen, Y. Yan, Z. Zhang, Z. Jin, K. Yi, C. Zhang, Y. Zheng, Y. Wang, J. Yang, X. Xu, J. Chen, Y. Lu, D. Wei, A. T. Wee, D. Wei, Nat. Commun. 2019, 10, 1188.
- 30S. Fukamachi, P. Solís-Fernández, K. Kawahara, D. Tanaka, T. Otake, Y. C. Lin, K. Suenaga, H. Ago, Nat. Electron. 2023, 6, 126.
- 31S. Wang, X. Wang, J. H. Warner, ACS Nano 2015, 9, 5246.
- 32D. Fu, X. Zhao, Y. Y. Zhang, L. Li, H. Xu, A. R. Jang, S. I. Yoon, P. Song, S. M. Poh, T. Ren, Z. Ding, W. Fu, T. J. Shin, H. S. Shin, S. T. Pantelides, W. Zhou, K. P. Loh, J. Am. Chem. Soc. 2017, 139, 9392.
- 33M. Zhang, Y. Zhu, X. Wang, Q. Feng, S. Qiao, W. Wen, Y. Chen, M. Cui, J. Zhang, C. Cai, L. Xie, J. Am. Chem. Soc. 2015, 137, 7051.
- 34X. Zhang, F. Zhang, Y. Wang, D. Schulman, T. Zhang, A. Bansal, N. Alem, S. Das, V. Crespi, M. Terrones, J. Redwing, ACS Nano 2019, 13, 3341.
- 35Y. Kobayashi, K. Kumakura, T. Akasaka, T. Makimoto, Nature 2012, 484, 223.
- 36S. Sundaram, X. Li, Y. Halfaya, T. Ayari, G. Patriarche, C. Bishop, S. Alam, S. Gautier, P. L. Voss, J. P. Salvestrini, A. Ougazzaden, Adv. Mater. Interfaces 2019, 6, 1900207.
- 37M. Jiang, L. Zhang, X. Zhou, C. Li, X. Zhang, D. Zhao, T. Chen, K. Xu, F. Yang, W. Shi, Z. Dong, Z. Zeng, B. Zhang, Appl. Surf. Sci. 2024, 659, 159902.
- 38H. Oh, Y. J. Hong, K. S. Kim, S. Yoon, H. Baek, S. H. Kang, Y. K. Kwon, M. Kim, G. C. Yi, NPG Asia Mater 2014, 6, e145.
- 39G. Wang, J. Huang, S. Zhang, J. Meng, J. Chen, Y. Shi, J. Jiang, J. Li, Y. Cheng, L. Zeng, Z. Yin, X. Zhang, Small 2023, 19, 2301086.
- 40R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, P. Blake, Small 2011, 7, 465.
- 41X. Yang, S. Nitta, M. Pristovsek, Y. Liu, Y. Liao, M. Kushimoto, Y. Honda, H. Amano, 2D Mater. 2020, 7, 015004.
- 42F. Liu, X. Rong, Y. Yu, T. Wang, B. W. Sheng, J. Q. Wei, S. F. Liu, J. J. Yang, F. Bertram, F. J. Xu, X. L. Yang, Z. H. Zhang, Z. X. Qin, Y. T. Zhang, B. Shen, X. Q. Wang, Appl. Phys. Lett. 2020, 116, 142104.
- 43A. K. Dabrowska, M. Tokarczyk, G. Kowalski, J. Binder, R. Bozek, J. Borysiuk, R. Stepniewski, A. Wysmołek, 2D Mater. 2021, 8, 015017.
- 44M. Albagami, A. Alrasheed, M. Alharbi, A. Alhazmi, K. Wong, H. Qasem, S. Alodan, O. Alolaiyan, K. L. Wang, M. R. Amer, Adv. Electron. Mater. 2020, 6, 1901246.
- 45C. Tian, Y. Gao, F. Tian, X. Wang, Z. Zhang, D. Duan, X. Huang, T. Cui, Phys. Rev. B 2022, 105, L180506.
- 46R. Yue, A. T. Barton, H. Zhu, A. Azcatl, L. F. Pena, J. Wang, X. Peng, N. Lu, L. Cheng, R. Addou, S. McDonnell, L. Colombo, J. W. P. Hsu, J. Kim, M. J. Kim, R. M. Wallace, C. L. Hinkle, ACS Nano 2015, 9, 474.
- 47H.-S. Tsai, J.-W. Liou, I. Setiyawati, K.-R. Chiang, C.-W. Chen, C.-C. Chi, Y.-L. Chueh, H. Ouyang, Y.-H. Tang, W.-Y. Woon, J.-H. Liang, Adv. Mater. Interfaces 2018, 5, 1701619.
- 48G. Lucovsky, R. M. White, J. A. Benda, J. F. Revelli, Phys. Rev. B 1973, 7, 3859.
- 49H. Wang, X. Zhang, J. Meng, Z. Yin, X. Liu, Y. Zhao, L. Zhang, Small 2015, 11, 1542.