A Dual Effect Additive Modified Electrolyte Strategy to Improve the Electrochemical Performance of Zinc-Based Prussian Blue Analogs Energy Storage Device
Qing Xiong
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorCorresponding Author
Chuanyin Xiong
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQiusheng Zhou
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorMengxia Shen
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorJiangnan Song
College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorMengjie Zhao
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorYongkang Zhang
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorCorresponding Author
Meng An
College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYonghao Ni
Department of Chemical and biomedical Engineering, The University of Maine, Orono, Maine, 04469 USA
University of New Brunswick, Limerick Pulp & Paper Ctr, Fredericton, NB, E3B 5A3 Canada
Search for more papers by this authorQing Xiong
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorCorresponding Author
Chuanyin Xiong
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQiusheng Zhou
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorMengxia Shen
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorJiangnan Song
College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorMengjie Zhao
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorYongkang Zhang
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorCorresponding Author
Meng An
College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYonghao Ni
Department of Chemical and biomedical Engineering, The University of Maine, Orono, Maine, 04469 USA
University of New Brunswick, Limerick Pulp & Paper Ctr, Fredericton, NB, E3B 5A3 Canada
Search for more papers by this authorAbstract
Prussian blue analogs (PBA) exhibit excellent potential for energy storage due to their unique three-dimensional open framework and abundant redox active sites. However, the dissolution of transition metal ions in water can compromise the structural integrity of PBAs, leading to significant issues such as low cycle life and capacity decay. To address these challenges, we proposed a dual-effect additive-modified electrolyte method to alleviate such issues, introducing sodium ferrocyanide (Na4Fe(CN)6) into aqueous alkaline electrolytes. It could not only capture Zn2+ dissolved on the surface of Na1.86Zn1.46[Fe(CN)6]0.87 (ZnHCF) electrode material during the cycling process but also conduct redox reactions on the electrode surface to provide additional capacitance. Through experiments and molecular simulation calculations, it showed that Na4Fe(CN)6 can restrict the movement of Zn dissolution into the electrolyte on the electrode surface. Based on this, an asymmetric supercapacitor based on ZnHCF//activated carbon was assembled with a modified electrolyte. The assembled supercapacitor displayed a specific capacitance of 1,329.65 mF cm−2, a power density of 2,900 mW cm−2, and an energy density of 388.28 mW h cm−2. This study provides a new idea for the design and construction of stable and efficient PBA energy storage materials by inhibiting the leaching of transition metals in PBA.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401254-sup-0001-SuppMat.docx35.5 MB | Supporting Information |
smtd202401254-sup-0002-VideoS1.mp41.7 MB | Supplemental Video 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Zhou, S. J. Guo, eScience 2023, 3, 100123.
- 2C. Y. Xiong, M. J. Zhao, T. X. Wang, J. Han, Y. K. Zhang, Z. Zhang, X. L. Ji, Q. Xiong, Y. H. Ni, J. Mater. Sci. Technol. 2025, 205, 53.
- 3Z. Xu, X. Hu, B. Fu, K. Khan, J. Wu, T. Li, H. Zhou, Z. Fang, M. Wu, J. Materiomics 2023, 9, 651.
- 4C. Y. Xiong, Q. Xiong, M. J. Zhao, B. Wang, L. Dai, Y. H. Ni, Adv. Compos. Hybrid Mater. 2023, 6, 205.
- 5J. Zhao, C. Zhou, Y. Guo, Z. Shen, G. Luo, Q. Wu, L. J. Yang, X. Z. Wang, Z. Hu, Adv. Powder Mater. 2024, 3, 100151.
- 6T. X. Wang, C. Y. Xiong, Y. K. Zhang, B. Wang, Q. Xiong, M. J. Zhao, Y. H. Ni, Nano Res. 2024, 17, 904.
- 7Z. Y. Meng, Z. M. Qiu, Y. X. Shi, S. X. Wang, G. X. Zhang, Y. C. Pi, H. Pang, eScience 2023, 3, 100092.
- 8C. Y. Xiong, T. X. Wang, Y. K. Zhang, C. Duan, Z. Zhang, Q. S. Zhou, Q. Xiong, M. J. Zhao, B. Wang, Y. H. Ni, ACS Appl. Mater. 2023, 15, 33763.
- 9G. Z. Chen, Int. Mater. 2017, 62, 173.
- 10C. Y. Xiong, T. X. Wang, J. Han, Z. Zhang, Y. H. Ni, Energy Environ. Mater. 2024, 7, e12651.
- 11Q. C. Zhu, D. Y. Zhao, M. Y. Cheng, J. Q. Zhou, K. A. Owusu, L. Q. Mai, Y. Yu, Adv. Energy Mater. 2019, 9, 1901081.
- 12C. Y. Xiong, C. M. Zheng, Z. Zhang, Q. Xiong, Q. S. Zhou, D. P. Li, M. X. Shen, Y. H. Ni, J. Materiomics 2025, 11, 100841.
- 13C. Y. Xiong, Y. D. Su, Adv. Sustainable Syst. 2024, https://doi.org/10.1002/adsu.202400578.
- 14Y. Y. Dai, C. L. Liu, Y. Bai, Q. Q. Kong, H. Pang, Nanotechnol. Rev. 2022, 11, 1005.
- 15S. C. Ashok, A. Vazhayil, J. Thomas, T. Thomas, I. Hasan, N. Thomas, J. Energy Storage 2024, 84, 110789.
- 16P. Díaz, Z. González, R. Santamaría, M. Granda, R. Menéndez, C. Blanco, Electrochim. Acta 2016, 212, 848.
- 17E. S. Goda, S. Lee, M. Sohail, K. R. Yoon, J. Energy Chem. 2020, 50, 206.
- 18Y. Xu, J. Wan, L. Huang, M. Y. Ou, C. Y. Fan, P. Wei, J. Peng, Y. Liu, Y. G. Qiu, X. P. Sun, C. Fang, Q. Li, J. T. Han, Y. H. Huang, J. A. Alonso, Y. S. Zhao, Adv. Energy Mater. 2019, 9, 1803158.
- 19C. D. Wessells, R. A. Huggins, Y. Cui, Nat. Commun. 2011, 2, 550.
- 20R. Y. Wang, B. Shyam, K. H. Stone, J. N. Weker, M. Pasta, H. W. Lee, M. F. Toney, Y. Cui, Adv. Energy Mater. 2015, 5, 1401869.
- 21Y. J. Yang, J. B. Zhou, L. L. Wang, Z. Jiao, M. Y. Xiao, Q. A. Huang, M. M. Liu, Q. S. Shao, X. L. Sun, J. J. Zhang, Nano Energy 2022, 99, 107424.
- 22L. W. Jiang, Y. X. Lu, C. L. Zhao, L. L. Liu, J. N. Zhang, Q. Q. Zhang, X. Shen, J. M. Zhao, X. Q. Yu, H. Li, X. J. Huang, L. Q. Chen, Y. S. Hu, Nat. Energy 2019, 4, 495.
- 23X. M. Yan, Y. Yang, E. S. Liu, L. Q. Sun, H. Wang, X. Z. Liao, Y. S. He, Z. F. Ma, Electrochim. Acta 2017, 225, 235.
- 24R. S. Guo, H. Y. Yang, L. H. Jin, R. B. Wang, Y. Zhang, Mater. Lett. 2023, 330, 133341.
- 25M. Xie, M. H. Xu, Y. X. Huang, R. J. Chen, X. X. Zhang, L. Li, F. Wu, Electrochem. Commun. 2015, 59, 91.
- 26P. P. Xu, G. L. Wang, H. H. Wang, Y. J. Li, C. X. Miao, J. Qu, Y. C. Zhang, F. D. Ren, K. Cheng, K. Ye, K. Zhu, D. X. Cao, X. F. Zhang, Chem. Eng. J. 2017, 328, 834.
- 27J. Agrisuelas, J. J. García-Jareño, D. Gimenez-Romero, F. Vicente, J. Electrochem. Soc. 2009, 156, P149.
- 28Y. L. Huang, S. Q. Ren, Appl. Mater. 2021, 22, 100886.
- 29J. M. Ge, L. Fan, A. M. Rao, J. Zhou, B. G. Lu, Nat. Sustain. 2022, 5, 225.
- 30C. Liu, S. Yuan, Y. Yang, X. X. Zhao, X. Duan, B. Cao, Q. Wang, Rare Met. 2024, 42, 4070.
- 31W. S. Li, J. Electrochem. Soc. 2020, 167, 090514.
- 32Z. Z. Zhao, W. Zhang, M. Liu, S. J. Yoo, N. L. Yue, F. X. Liu, X. Y. Zhou, K. X. Song, J. G. Kim, Z. J. Chen, X. Y. Lang, Q. Jiang, C. Y. Zhi, W. T. Zheng, Nano Lett. 2023, 23, 5307.
- 33C. Zhan, T. P. Wu, J. Lu, K. Amine, Energy Environ. 2018, 11, 243.
- 34W. L. Shu, J. X. Li, G. W. Zhang, J. S. Meng, X. P. Wang, L. Q. Mai, Nano-Micro Lett. 2024, 16, 128.
- 35Z. H. Liang, F. Tian, G. Z. Yang, C. X. Wang, Nat. Commun. 2023, 14, 3591.
- 36L. Chen, W. L. Sun, K. Xu, Q. Y. Dong, L. Zheng, J. Wang, D. R. Lu, Y. B. Shen, J. Y. Zhang, F. Fu, H. B. Kong, J. Q. Qin, H. W. Chen, ACS Energy Lett. 2022, 7, 1672.
- 37S. P. Wang, Y. W. Zhao, H. M. Lv, X. H. Hu, J. He, C. Y. Zhi, H. F. Li, Small 2023, 19, 2207664.
- 38J. Shi, X. Tian, Y. Song, T. Yang, S. Hu, Z. Liu, Energy Convers. Manage. 2023, 1, 9370009.
- 39G. X. Wang, M. Y. Zhang, H. F. Xu, L. Lu, Z. Y. Xiao, S. Liu, J. Energy Chem. 2018, 27, 1219.
- 40Y. Park, H. Choi, D. G. Lee, M. C. Kim, N. A. T. Tran, Y. Cho, Y. W. Lee, J. I. Sohn, ACS Sutain. Chem. Eng. 2020, 8, 2409.
- 41Y. Z. Zhang, H. S. Ao, Q. Dong, S. J. Zhang, Z. G. Hou, N. N. Wang, X. S. Xie, J. Rong, Z. Y. Li, Rare Met. 2024, 43, 4162.
- 42R. Ma, L. Y. Cao, J. T. Zhuo, J. T. Lu, J. X. Chen, J. Huang, G. W. Yang, F. Yi, Adv. Energy Mater. 2023, 13, 2301219.
- 43G. Lota, E. Frackowiak, Electrochem. Commun. 2009, 11, 87.
- 44Z. F. Wang, Z. L. Yi, S. C. Yu, Y. F. Fan, J. X. Li, L. J. Xie, S. C. Zhang, F. Y. Su, C. M. Chen, ACS Appl. Mater. 2022, 14, 24497.
- 45X. Y. Wu, C. H. Wu, C. X. Wei, L. Hu, J. F. Qian, Y. L. Cao, X. P. Ai, J. L. Wang, H. X. Yang, ACS Appl. Mater. 2016, 8, 5393.
- 46D. Z. Yang, X. Z. Liao, B. W. Huang, J. N. Shen, Y. S. He, Z. F. Ma, J. Mater. Chem. A 2013, 1, 13417.
- 47Z. A. Ji, B. Han, H. T. Liang, C. G. Zhou, Q. Gao, K. S. Xia, J. P. Wu, ACS Appl. Mater. 2016, 8, 33619.
- 48B. X. Xie, L. G. Wang, J. Shu, X. M. Zhou, Z. J. Yu, H. Huo, Y. L. Ma, X. Q. Cheng, G. P. Yin, P. J. Zuo, ACS Appl. Mater. 2019, 11, 46705.
- 49D. P. Cai, X. H. Yang, B. H. Qu, T. H. Wang, Chem. Commun. 2017, 53, 6780.
- 50W. H. Ren, M. S. Qin, Z. X. Zhu, M. Y. Yan, Q. Li, L. Zhang, D. N. Liu, L. Q. Mai, Nano Lett. 2017, 17, 4713.
- 51F. Wang, W. Sun, Z. Shadike, E. Y. Hu, X. Ji, T. Gao, X. Q. Yang, K. Xu, C. S. Wang, Angew. Chem., Int. Ed. 2018, 57, 11978.
- 52J. M. Yue, L. D. Lin, L. W. Jiang, Q. Q. Zhang, Y. X. Tong, L. M. Suo, Y. S. Hu, H. Li, X. J. Huang, L. Q. Chen, Adv. Energy Mater. 2020, 10, 2000665.
- 53X. L. Dong, Y. G. Wang, Y. Y. Xia, Acc. Chem. Res. 2021, 54, 3883.
- 54Y. L. Tang, Q. H. Zhang, W. H. Zuo, S. Y. Zhou, G. F. Zeng, B. D. Zhang, H. T. Zhang, Z. Y. Huang, L. R. Zheng, J. P. Xu, W. Yin, Y. F. Qiu, Y. G. Xiao, Q. B. Zhang, T. Q. Zhao, H. G. Liao, I. Hwang, C. J. Sun, K. Amine, Q. S. Wang, Y. Sun, G. L. Xu, L. Gu, Y. Qiao, S. G. Sun, Nat. Sustain. 2024, 7, 348.
- 55G. A. Giffin, Nat. Commun. 2022, 13, 5250.
- 56R. Sakamoto, M. Yamashita, K. Nakamoto, Y. Q. Zhou, N. Yoshimoto, K. Fujii, T. Yamaguchi, A. Kitajou, S. Okada, Phys. Chem. Chem. Phys. 2020, 22, 26452.
- 57X. M. Yin, H. J. Li, H. Q. Wang, Z. Y. Zhang, R. M. Yuan, J. H. Lu, Q. Song, J. G. Wang, L. L. Zhang, Q. G. Fu, ACS Appl. Mater. 2018, 10, 29496.
- 58J. G. Wang, Z. Y. Zhang, X. R. Liu, B. Q. Wei, Electrochim. Acta 2017, 235, 114.
- 59Z. X. Song, W. Liu, Q. Yuan, Q. Zhou, G. C. Liu, Z. F. Zhao, J. Mater. Sci. Mater. 2018, 29, 14897.
- 60C. Y. Xiong, B. B. Li, C. Duan, L. Dai, S. X. Nie, C. R. Qin, Y. J. Xu, Y. H. Ni, Chem. Eng. J. 2021, 418, 129518.
- 61C. Y. Xiong, Y. K. Zhang, C. M. Zheng, Y. Yin, Q. Xiong, M. J. Zhao, B. Wang, Electrochim. Acta 2024, 493, 144373.
- 62S. Plimpton, J. Comput. Phys. 1995, 117, 1.
- 63C. Y. Xiong, W. H. Dang, Q. Yang, Q. S. Zhou, M. X. Shen, Q. Xiong, M. An, X. Jiang, Y. H. Ni, X. L. Ji, Adv. Sci. 2024, 11, 2305962.
- 64G. Prampolini, P. Y. Yu, S. Pizzanelli, I. Cacelli, F. Yang, J. A. Zhao, J. P. Wang, J. Phys. Chem. B 2014, 118, 14899.
- 65K. Kholmurodov, M. Abasheva, K. Yasuoka, Biotechnol. Adv. 2010, 01, 216.
- 66E. Duboue-Dijón, P. E. Mason, H. E. Fischer, P. Jungwirth, J. Phys. Chem. B 2018, 122, 3296.