Fe-Mediated Tweaking of Band Bending and Activation Energy in α-MoO3 Nano Lamella for Enhanced NO2 Gas Detection Under Low Operating Temperature
R. Aysha Parveen
Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203 India
Centre of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203 India
Search for more papers by this authorE. Vinoth
Centre of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203 India
Nanotechnology Research Centre, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203 India
Search for more papers by this authorK. Hara
Research Institute of Electronics, Shizuoka University, 3–5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka, 432-8011 Japan
Search for more papers by this authorJ. Archana
Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203 India
Centre of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203 India
Search for more papers by this authorCorresponding Author
S. Ponnusamy
Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203 India
Centre of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
M. Navaneethan
Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203 India
Centre of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203 India
Nanotechnology Research Centre, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorR. Aysha Parveen
Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203 India
Centre of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203 India
Search for more papers by this authorE. Vinoth
Centre of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203 India
Nanotechnology Research Centre, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203 India
Search for more papers by this authorK. Hara
Research Institute of Electronics, Shizuoka University, 3–5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka, 432-8011 Japan
Search for more papers by this authorJ. Archana
Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203 India
Centre of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203 India
Search for more papers by this authorCorresponding Author
S. Ponnusamy
Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203 India
Centre of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
M. Navaneethan
Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203 India
Centre of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203 India
Nanotechnology Research Centre, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Concern over increasing pollution and ways to mitigate it is in high demand due to the swift advancement of technology and the creation of advanced utilities. Nitrogen oxide (NO2) is a well-known evolved toxin that poses a threat to human health, the environment, and biodiversity. Therefore, several works are carried to sense the NO2 gas at its trace concentration. However, the majority of NO2 sensors that have been reported have inadequate Limit of Detection (LOD), high operating temperature, and low sensitivity. Orthorhombic molybdenum oxide (α-MoO3) recently emerged as hotspot in the gas sensing research and noted for its high sensitivity, and distinct sensing capabilities owing to its unique layered structure. In this study, Fe-doped α-MoO3 nanosheets for NO2 sensing is prepared, and at a low operating temperature of 110 °C, an excellent sensitivity of 1282% for 10 ppm of NO2 is achieved. Long-term stability, good repeatability, and an ultra-low detection limit of 79 ppt are also demonstrated by the manufactured sensors. In addition, the obtained low activation energy of -2.9 KJ mol−1 and the high band bending for FM6 supports the highly responsive NO2 detection at low operating temperatures.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401214-sup-0001-SuppMat.docx3.1 MB | Supporting Information: |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Zhang, Q. Lin, F. Han, Z. Wang, B. Tian, L. Zhao, T. Dong, Z. Jiang, Microsyst. Nanoeng. 2022, 8, 40.
- 2U. Latza, S. Gerdes, X. Baur, Int. J. Hygiene Environ. Health 2009, 212, 271.
- 3Q. Sheng, Z. Zhu, Plants (Basel, Switzerland) 2019, 8, 45.
- 4R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Nano-Micro Lett. 2015, 7, 97.
- 5M. Bilal, A. R. Bagheri, P. Bhatt, S. Chen, J Environ Manage 2021, 291, 112685.
- 6M. C. Naik, S. R. Bamane, K. S. Pakhare, S. S. Potdar, U. M. Patil, J. Mater. Sci.: Mater. Electron. 2021, 32, 19925.
- 7K. S. Hemalatha, K. Rukmani, Mater. Res. Express 2019, 6, 085008.
- 8I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, L. Spiess, Thin Solid Films 2002, 418, 9.
- 9S. S. Shendage, V. L. Patil, S. A. Vanalakar, S. P. Patil, N. S. Harale, J. L. Bhosale, J. H. Kim, P. S. Patil, Sens. Actuators, B 2017, 240, 426.
- 10Z. Zhang, M. haq, Z. Wen, Z. Ye, L. Zhu, Appl. Surf. Sci. 2018, 434, 891.
- 11T. Akamatsu, T. Itoh, N. Izu, W. Shin, Sensors 2013, 13, 12467.
- 12S. Mobtakeri, S. Habashyani, E. Gür, ACS Appl. Mater. Interfaces 2022, 14, 25741.
- 13D. Kwak, M. Wang, K. J. Koski, L. Zhang, H. Sokol, R. Maric, Y. Lei, ACS Appl. Mater. Interfaces 2019, 11, 10697.
- 14A. A. Felix, R. A. Silva, M. O. Orlandi, CrystEngComm 2020, 22, 4640.
- 15R. Malik, N. Joshi, V. K. Tomer, Materials Advances 2021, 2, 4190.
- 16D. B. Patil, V. L. Patil, S. S. Patil, T. D. Dongale, N. D. Desai, P. R. Patil, R. M. Mane, P. N. Bhosale, P. S. Patil, P. M. Kadam, K V. Khot, Chem. Phys. Lett. 2021, 782, 139025.
- 17A. A. Mane, A. V. Moholkar, Appl. Surf. Sci. 2017, 405, 427.
- 18Q. Y. Ouyang, L. Li, Q. S. Wang, Y. Zhang, T. S. Wang, F. N. Meng, Y. J. Chen, P. Gao, Sens. Actuators, B 2012, 169, 17.
- 19S. Bai, C. Chen, D. Zhang, R. Luo, D. Li, A. Chen, C. C. Liu, Sens. Actuators, B 2014, 204, 754.
- 20V. Štengl, S. Bakardjieva, J. Phys. Chem. C 2010, 114, 19308.
- 21J. Correa, M. P. Aliprandini, J. Tenório, D. Espinosa, Precipitation of Metals from Liquor Obtained in Nickel Mining 2016, 333.
- 22L. Seguin, M. Figlarz, R. Cavagnat, J. C. Lasskgues, SPECTROCHIMICA ACTA PART A Infrared and Raman spectra of MOO, molybdenum trioxides and MOO,. xH,O molybdenum trioxide hydrates*.
- 23P. R. Huang, Y. He, C. Cao, Z. H. Lu, Sci. Rep. 2014, 4, 7131.
- 24R. Tokarz-Sobieraj, K. Hermann, M. Witko, A. Blume, G. Mestl, R. Schl Ogl, Properties of oxygen sites at the MoO 3 (0 1 0) surface: density functional theory cluster studies and photoemission experiments, www.elsevier.com/locate/susc.
- 25A. Phuruangrat, S. Thongtem, T. Thongtem, Res. Chem. Intermed. 2016, 42, 7487.
- 26D. E. Diaz-Droguett, R. El Far, V. M. Fuenzalida, A. L. Cabrera, Mater. Chem. Phys. 2012, 134, 631.
- 27E. Haro-Poniatowski, C. Julien, B. Pecquenard, J. Livage, M. A. Camacho-López, Laser-induced structural transformations in MoO 3 investigated by Raman spectroscopy, 2014. http://journals.cambridge.org.
- 28I. R. Beattie, T. R. Gilson, J. S. Anderson, Proc. R. Soc. London, Ser. A 1997, 307, 407.
- 29I. de Castro Silva, A. C. Reinaldo, F. A. Sigoli, I. O. Mazali, RSC Adv. 2020, 10, 18512.
- 30I. R. Beattie, T. R. Gilson, J. Chem. Soc. A 1969, 2322.
- 31L. Sillera, N. Nasralla, M. Yeganeh, Y. Astuti, S. Piticharoephun, N. Shahtahmasebi, A. Kompany, M. Karimipour, B. G. Mendis, N. R. J. Poolton, Scientia Iranica 2013, 20, 1018.
- 32M. Shabbir, M. Imran, A. Haider, I. Shahzadi, W. Ahmad, A. Ul-Hamid, W. Nabgan, A. Shahzadi, A. Al-Shanini, M. M. Al-Anazy, M. Adam, M. Ikram, ACS Omega 2023, 8, 34805.
- 33S. Z. Noby, A. Fakharuddin, S. Schupp, M. Sultan, M. Krumova, M. Drescher, M. Azarkh, K. Boldt, L. Schmidt-Mende, Mater. Adv. 2022, 3, 3571.
- 34A. N. P. Raj, R. B. Bennie, G. A. I. Xavier, C. Joel, D. A. Chelliah, S. H. Kengaram, J. Cluster Sci. 2022, 33, 2429.
- 35R. B. Bennie, C. Joel, A. N. P. Raj, A. J. Antony, S. I. Pillai, J. Solid State Electrochem. 2023, 27, 271.
- 36X. Chen, R. M. de Boer, A. Kosari, H. van Gog, M. A. van Huis, J. Phys. Chem. C 2023, 127, 21387.
- 37S. Yang, G. Lei, L. Tan, H. Xu, J. Xiong, Z. Wang, H. Gu, J. Alloys Compd. 2021, 877, 160200.
- 38R. Aysha Parveen, E. Vinoth, S. Harish, K. Hara, J. Archana, S. Ponnusamy, M. Navaneethan, Sens. Actuators, B 2023, 389, 133810.
- 39T. Nagyné-Kovács, L. Studnicka, I. E. Lukács, K. László, P. Pasierb, I. M. Szilágyi, G. Pokol, Nanomaterials 2020, 10, 891.
- 40A. Manivel, G. J. Lee, C. Y. Chen, J. H. Chen, S. H. Ma, T. L. Horng, J. J. Wu, Mater. Res. Bull. 2015, 62, 184.
- 41F. Abla, Y. Elsayed, N. Abu Farha, K. Obaideen, A. A. Mohamed, H. Lee, C. Han, M. Egilmez, S. Kanan, In Catalysts 2023, 13, 362.
- 42A. M. Taurino, A. Forleo, L. Francioso, P. Siciliano, M. Stalder, R. Nesper, Appl. Phys. Lett. 2006, 88, 152111.
- 43S. Bai, S. Chen, L. Chen, K. Zhang, R. Luo, D. Li, C. C. Liu, Sens. Actuators, B 2012, 174, 51.
- 44M. B. Rahmani, S. H. Keshmiri, J. Yu, A. Z. Sadek, L. Al-Mashat, A. Moafi, K. Latham, Y. X. Li, W. Wlodarski, K. Kalantar-zadeh, Sens. Actuators, B 2010, 145, 13.
- 45W. Li, K. Xing, P. Liu, C. Chuang, Y. R. Lu, T. S. Chan, T. Tesfamichael, N. Motta, D. C. Qi, Adv. Mater. Technol. 2022, 7, 2100579.
- 46A. A. Mane, M. P. Suryawanshi, J. H. Kim, A. V. Moholkar, J. Colloid Interface Sci. 2016, 483, 220.
- 47F. Rahman, A. Zavabeti, M. A. Rahman, A. Arash, A. Mazumder, S. Walia, S. Sriram, M. Bhaskaran, S. Balendhran, ACS Appl. Mater. Interfaces 2019, 11, 40189.
- 48A. A. Mane, A. V. Moholkar, Solid-State Electron. 2018, 139, 21.
- 49W. Jiang, L. Meng, S. Zhang, X. Chuai, Z. Zhou, C. Hu, P. Sun, F. Liu, X. Yan, G. Lu, Sens. Actuators, B 2019, 299, 126888.
- 50J. Shen, S. Guo, C. Chen, L. Sun, S. Wen, Y. Chen, S. Ruan, Sens. Actuators, B 2017, 252, 757.
- 51S. Wang, J. Xie, J. Hu, H. Qin, Y. Cao, Appl. Surf. Sci. 2020, 512, 145722.