Mitigating Capacity and Voltage Decay in Li-Rich Cathode Via Dual-Phase Design
Tianle Li
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYupeng Xiao
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorTianjiao Zhu
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYuqian Li
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Wenju Wang
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
E-mail: [email protected]
Search for more papers by this authorTianle Li
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYupeng Xiao
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorTianjiao Zhu
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYuqian Li
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Wenju Wang
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
E-mail: [email protected]
Search for more papers by this authorAbstract
High-capacity O3-type lithium-rich manganese-based (LRM) materials exhibit significant structural instability and severe voltage decay, which limit their practical applications. In contrast, the O2-type LRM materials demonstrate remarkable structural stability despite offering lower capacity. In this study, a composite material, O3@O2-LRM is designed, by coating the main structure of O3-type LRM with a minor amount of O2-type LRM to combine the high capacity of the O3 phase with the superior stability of the O2 phase. Electrochemical tests demonstrate that O3@O2-LRM exhibits both high specific capacity and reduced voltage decay. Furthermore, a series of characterizations after different cycles confirm its enhanced structure stability compared to O3-LRM. This novel structure holds great promise for developing advanced cathode materials capable of meeting the demanding requirements of next-generation Li-ion batteries.
Conflict of Interest
The authors declare that they have no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smtd202401206-sup-0001-SuppMat.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Xu, Y. Xiao, Y. Yang, R. Xu, Y. X. Yao, X. R. Chen, Z. H. Li, C. Yan, J. Q. Huang, Adv. Mater. 2023, 35, 2301881.
- 2J. Zhang, Y. Wang, B. Jiang, H. He, S. Huang, C. Wang, Y. Zhang, X. Han, D. Guo, G. He, M. Ouyang, Nat. Commun. 2023, 14, 5940.
- 3D. Lu, R. Li, M. M. Rahman, P. Yu, L. Lv, S. Yang, Y. Huang, C. Sun, S. Zhang, H. Zhang, J. Zhang, X. Xiao, T. Deng, L. Fan, L. Chen, J. Wang, E. Hu, C. Wang, X. Fan, Nature 2024, 627, 101.
- 4W. He, W. Guo, H. Wu, L. Lin, Q. Liu, X. Han, Q. Xie, P. Liu, H. Zheng, L. Wang, X. Yu, D. L. Peng, Adv. Mater. 2021, 33, 2005937.
- 5H. Liu, X. Wu, X. Lou, W. Tong, J. Li, B. Hu, C. Li, Energy Storage Mater. 2023, 63, 103058.
- 6Z. Jing, S. Wang, Q. Fu, V. Baran, A. Tayal, N. P. M. Casati, A. Missyul, L. Simonelli, M. Knapp, F. Li, H. Ehrenberg, S. Indris, C. Shan, W. Hua, Energy Storage Mater. 2023, 59, 102775.
- 7X. Zhang, Y. Wang, Q. Ouyang, Q. Wang, C. Fu, G. Li, L. Li, Nano Energy 2024, 128, 109973.
- 8J. Huang, B. Ouyang, Y. Zhang, L. Yin, D. H. Kwon, Z. Cai, Z. Lun, G. Zeng, M. Balasubramanian, G. Ceder, Nat. Mater. 2023, 22, 353.
- 9Z. Li, H. Li, S. Cao, W. Guo, J. Liu, J. Chen, C. Guo, G. Chen, B. Chang, Y. Bai, X. Wang, Chem. Eng. J. 2023, 452, 139041.
- 10J. Song, F. Ning, Y. Zuo, A. Li, H. Wang, K. Zhang, T. Yang, Y. Yang, C. Gao, W. Xiao, Z. Jiang, T. Chen, G. Feng, D. Xia, Adv. Mater. 2023, 35, 2208726.
- 11J. Dong, F. Wu, J. Zhao, Q. Shi, Y. Lu, N. Li, D. Cao, W. Li, J. Hao, X. Yang, L. Chen, Y. Su, Energy Storage Mater. 2023, 60, 102798.
- 12Y. Su, J. Zhao, J. Dong, Q. Shi, J. Hao, W. Li, L. Bao, Y. Lu, N. Li, D. Cao, L. Chen, F. Wu, Chem. Eng. J. 2023, 475, 145991.
- 13Z. Li, S. Cao, J. Chen, L. Wu, M. Chen, H. Ding, R. Wang, W. Guo, Y. Bai, M. Liu, X. Wang, Small 2024, 2400641.
- 14W. Zhang, Y. Sun, H. Deng, J. Ma, Y. Zeng, Z. Zhu, Z. Lv, H. Xia, X. Ge, S. Cao, Y. Xiao, S. Xi, Y. Du, A. Cao, X. Chen, Adv. Mater. 2020, 32, 2000496.
- 15C. Cui, X. Fan, X. Zhou, J. Chen, Q. Wang, L. Ma, C. Yang, E. Hu, X. Q. Yang, C. Wang, J. Am. Chem. Soc. 2020, 142, 8918.
- 16K. Kawai, X. M. Shi, N. Takenaka, J. Jang, B. M. de Boisse, A. Tsuchimoto, D. Asakura, J. Kikkawa, M. Nakayama, M. Okubo, A. Yamada, Energy Environ. Sci. 2022, 15, 2591.
- 17D. Eum, H. Y. Jang, B. Kim, J. K. Y. Chung, D. Kim, S. P. Cho, S. H. Song, S. M. Kang, S. J. Yu, S. O. Park, J. H. Song, H. Kim, O. Tamwattana, D. Kim, J. Lim, K. S. Kang, Energy Environ. Sci. 2023, 16, 673.
- 18X. Yang, T. Zhao, X. Zhai, J. Zhang, S. Wang, W. Hua, Ind. Eng. Chem. Res. 2024, 63, 4197.
- 19H. Shang, Y. Zuo, F. Shen, J. Song, F. Ning, K. Zhang, L. He, D. Xia, Nano Lett. 2020, 20, 5779.
- 20X. Cao, J. Sun, Z. Chang, P. Wang, X. Yue, J. Okagaki, P. He, E. Yoo, H. Zhou, Adv. Funct. Mater. 2022, 32, 2205199.
- 21T. Liu, J. Liu, L. Li, L. Yu, J. Diao, T. Zhou, S. Li, A. Dai, W. Zhao, S. Xu, Y. Ren, L. Wang, T. Wu, R. Qi, Y. Xiao, J. Zheng, W. Cha, R. Harder, I. Robinson, J. Wen, J. Lu, F. Pan, K. Amine, Nature 2022, 606, 305.
- 22T. Li, Y. Mao, X. Liu, W. Wang, Y. Li, Y. Xiao, X. Hao, T. Zhu, J. You, J. Zang, Appl. Surf. Sci. 2024, 657, 159841.
- 23H. Zhao, W. Li, J. Li, H. Xu, C. Zhang, J. Li, C. Han, Z. Li, M. Chu, X. Qiu, Nano Energy 2022, 92, 106760.
- 24F. Missaoui, K. Trablsi, K. Moufida, A. Ates, A. Mahmoud, F. Boschini, A. Ben Rhaiem, RSC Adv. 2023, 13, 17923.
- 25D. Carlier, I. Saadoune, L. Croguennec, M. Ménétrier, E. Suard, C. Delmas, Solid State Ionics 2001, 144, 263.
- 26J. Song, B. Li, Y. Chen, Y. Zuo, F. Ning, H. Shang, G. Feng, N. Liu, C. Shen, X. Ai, D. Xia, Adv. Mater. 2020, 32, 2000190.
- 27P. Yang, S. Zhang, Z. Wei, X. Guan, J. Xia, D. Huang, Y. Xing, J. He, B. Wen, B. Liu, H. Xu, Small 2023, 19, 2207797.
- 28T. Lei, B. Cao, W. Fu, X. Shi, Z. Ding, Q. Zhang, J. Wu, K. Li, T. Y. Zhang, Chem. Eng. J. 2024, 490, 151522.
- 29B. Cao, Z. Chen, H. Cao, C. Zhu, H. Yang, T. Li, W. Xu, F. Pan, M. Zhang, Adv. Funct. Mater. 2023, 33, 2214921.
- 30S. L. Cui, Y. Y. Wang, S. Liu, G. R. Li, X. P. Gao, Electrochim. Acta 2019, 328, 135109.
- 31J. Feng, Y. S. Jiang, F. D. Yu, W. Ke, L. F. Que, J. G. Duh, Z. B. Wang, J Energy Chem 2022, 66, 666.
- 32Y. Chen, Y. Liu, J. Zhang, H. Zhu, Y. Ren, W. Wang, Q. Zhang, Y. Zhang, Q. Yuan, G. X. Chen, L. C. Gallington, K. Li, X. Liu, J. Wu, Q. Liu, Y. Chen, Energy Storage Mater. 2022, 51, 756.
- 33T. Wu, X. Zhang, Y. Wang, N. Zhang, H. Li, Y. Guan, D. Xiao, S. Liu, H. Yu, Adv. Funct. Mater. 2023, 33, 2210154.
- 34H. Lee, S. B. Lim, J. Y. Kim, M. Jeong, Y. J. Park, W. S. Yoon, ACS Appl. Mater. Interfaces 2018, 10, 10804.
- 35T. Li, Y. Xiao, X. Hao, Y. Li, W. Wang, Carbon 2024, 228, 119309.
- 36J. Zang, Y. Mao, X. Hao, H. Liu, T. Zhu, Z. Xu, Y. Xiao, T. Li, W. Wang, Y. Li, Chem. Eng. J. 2024, 483, 149036.
- 37D. Song, X. Sun, Q. Niu, Q. Zhao, C. Wang, L. Yang, Y. Wu, M. Li, T. Ohsaka, F. Matsumotoc, J. Wu, ACS Appl. Mater. Interfaces 2020, 12, 49666.
- 38D. Song, Z. Yang, Q. Zhao, X. Sun, Y. Wu, Y. Zhang, J. Gao, C. Wang, L. Yang, T. Ohsaka, F. Matsumoto, J. Wu, ACS Appl. Mater. Interfaces 2022, 14, 12264.
- 39Z. L. Wu, H. J. Xie, Y. Z. Li, F. C. Zhang, Z. Y. Wang, W. Zheng, M. Y. Yang, Y. L. Cao, Z. G. Lu, Inorg. Chem. Front. 2021, 8, 127.
- 40K. Kleiner, B. Strehle, A. R. Baker, S. J. Day, C. C. Tang, I. Buchberger, F. F. Chesneau, H. A. Gasteiger, M. Piana, Chem. Mater. 2018, 30, 3656.
- 41D. Eum, B. Kim, S. J. Kim, H. Park, J. Wu, S. P. Cho, G. Yoon, M. H. Lee, S. K. Jung, W. Yang, W. M. Seong, K. Ku, O. Tamwattana, S. K. Park, I. Hwang, K. Kang, Nat. Mater. 2020, 19, 419.
- 42J. Yang, P. Li, F. Zhong, X. Feng, W. Chen, X. Ai, H. Yang, D. Xia, Y. Cao, Adv. Energy Mater. 2020, 10, 1904264.
- 43T. Zhao, Y. Meng, R. Ji, F. Wu, L. Li, R. Chen, J. Alloys Compd. 2019, 811, 152060.
- 44J. Sun, C. Sheng, X. Cao, P. Wang, P. He, H. Yang, Z. Chang, X. Yue, H. Zhou, Adv. Funct. Mater. 2022, 32, 2110295.
- 45L. Baggetto, N. J. Dudney, G. M. Veith, Electrochim. Acta 2013, 90, 135.
- 46M. Hekmatfar, A. Kazzazi, G. G. Eshetu, I. Hasa, S. Passerini, ACS Appl. Mater. Interfaces 2019, 11, 43166.
- 47S. Liu, L. Wang, C. Zhang, B. Chu, C. Wang, T. Huang, A. Yu, J. Power Sources 2019, 438, 226979.
- 48S. L. Cui, M. Y. Gao, G. R. Li, X. P. Gao, Adv. Energy Mater. 2022, 12, 2003885.
- 49Y. Jiang, G. Sun, F. Yu, L. Que, L. Deng, X. Meng, Z. Wang, Ionics 2020, 26, 151.
- 50B. Cao, T. Li, W. Zhao, L. Yin, H. Cao, D. Chen, L. Li, F. Pan, M. Zhang, Small 2023, 19, 2301834.