A Mitochondrial Oxidative Stress Amplifier to Overcome Hypoxia Resistance for Enhanced Photodynamic Therapy
Ping Dong
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorJialing Hu
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorShuyi Yu
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorYizhuo Zhou
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorTianhui Shi
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorYun Zhao
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorXiuyuan Wang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorCorresponding Author
Xiaoqing Liu
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
E-mail: [email protected]
Search for more papers by this authorPing Dong
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorJialing Hu
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorShuyi Yu
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorYizhuo Zhou
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorTianhui Shi
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorYun Zhao
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorXiuyuan Wang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorCorresponding Author
Xiaoqing Liu
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Hypoxia-induced resistance to tumor treatment restricts further development of photodynamic therapy. Instead of simple reoxygenation to relieve hypoxia in traditional therapeutic approaches, a mitochondria-targeted reactive oxygen species (ROS) amplifier is constructed to reverse hypoxia resistance and enhance tumor sensitivity to hypoxia-resistant photodynamic therapy. Mesoporous silica nanoparticles are modified with triphenylphosphine to enhance its blood circulation and endow it with mitochondria-targeted specificity. α-Tocopherol succinate and indocyanine green are loaded in mitochondria-targeted mesoporous silica nanoparticles to reduce innate oxygen consumption by blocking mitochondrial respiration chain, leading to endogenous mitochondrial ROS burst and imaging-guided photodynamic therapy. This mitochondria-targeted oxidative stress amplifier not only disrupts mitochondrial redox homeostasis and triggers long-term high oxidative stress but also makes tumor more sensitive to hypoxia-resistant photodynamic therapy. The imaging-guided ROS amplifier confirms the feasibility and effectiveness of both in vitro and in vivo anticancer performance, suggesting a promising clinical strategy in hypoxia-related tumor treatment.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smtd202100581-sup-0001-SuppMat.pdf1,012.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Fukumura, R. K. Jain, J. Cell. Biochem. 2007, 101, 937.
- 2T. L. Whiteside, Oncogene 2008, 27, 5904.
- 3K. Graham, E. Unger, Int. J. Nanomed. 2018, 13, 6049.
- 4M. W. Dewhirst, Y. Cao, B. Moeller, Nat. Rev. Cancer 2008, 8, 425.
- 5J. Liu, W. Bu, J. Shi, Chem. Rev. 2017, 117, 6160.
- 6X. Li, J. F. Lovell, J. Yoon, X. Chen, Nat. Rev. Clin. Oncol. 2020, 17, 657.
- 7X. Li, D. Lee, J. D. Huang, J. Yoon, Angew. Chem., Int. Ed. 2018, 57, 9885.
- 8G. Lorusso, C. Rüegg, Histochem. Cell Biol. 2008, 130, 1091.
- 9W. R. Wilson, M. P. Hay, Nat. Rev. Cancer 2011, 11, 393.
- 10W. Fan, P. Huang, X. Chen, Chem. Soc. Rev. 2016, 45, 6488.
- 11X. Li, N. Kwon, T. Guo, Z. Liu, J. Yoon, Angew. Chem., Int. Ed. 2018, 57, 11522.
- 12S. Gao, H. Lin, H. Zhang, H. Yao, Y. Chen, J. Shi, Adv. Sci. 2019, 6, 1801733.
- 13J. Hu, F. Wang, F. Liu, W. Sun, Q. Jiang, Y. Liu, Y. Zhao, X. Liu, Nano Res. 2020, 13, 1111.
- 14Y. Li, K. H. Yun, H. Lee, S. H. Goh, Y. G. Suh, Y. Choi, Biomaterials 2019, 197, 12.
- 15Z. Xu, L. Zhang, M. Pan, Q. Jiang, Y. Huang, F. Wang, X. Liu, Adv. Funct. Mater. 2021, 2104100.
- 16Y. Zhang, F. Wang, C. Liu, Z. Wang, L. Kang, Y. Huang, K. Dong, J. Ren, X. Qu, ACS Nano 2018, 12, 651.
- 17J. Zhuang, M. Ying, K. Spiekermann, M. Holay, Y. Zhang, F. Chen, H. Gong, J. H. Lee, W. Gao, R. H. Fang, L. Zhang, Adv. Mater. 2018, 30, 1804693.
- 18J. Bai, X. Jia, W. Zhen, W. Cheng, X. Jiang, J. Am. Chem. Soc. 2017, 140, 106.
- 19Y. T. Fan, T. J. Zhou, P. F. Cui, Y. J. He, X. Chang, L. Xing, H. L. Jiang, Adv. Funct. Mater. 2019, 29, 1806708.
- 20D. Xia, P. Xu, X. Luo, J. Zhu, H. Gu, D. Huo, Y. Hu, Adv. Funct. Mater. 2019, 29, 1807294.
- 21W. Yu, T. Liu, M. Zhang, Z. Wang, J. Ye, C. X. Li, W. Liu, R. Li, J. Feng, X. Z. Zhang, ACS Nano 2019, 13, 1784.
- 22D. C. Wallace, Nat. Rev. Cancer 2012, 12, 685.
- 23S. E. Weinberg, N. S. Chandel, Nat. Chem. Biol. 2015, 11, 9.
- 24P. Li, D. Zhang, L. Shen, K. Dong, M. Wu, Z. Ou, D. Shi, Sci. Rep. 2016, 6, 22831.
- 25Z. Xu, X. Chen, Z. Sun, C. Li, B. Jiang, Mater. Today Chem. 2019, 12, 240.
- 26N. Gong, X. Ma, X. Ye, Q. Zhou, X. Chen, X. Tan, S. Yao, S. Huo, T. Zhang, S. Chen, X. Teng, X. Hu, J. Yu, Y. Gan, H. Jiang, J. Li, X. J. Liang, Nat. Nanotechnol. 2019, 14, 379.
- 27Q. Qu, X. Ma, Y. Zhao, ACS Appl. Mater. Interfaces 2016, 8, 34261.
- 28Q. Qu, X. Ma, Y. Zhao, Nanoscale 2015, 7, 16677.
- 29S. S. Sabharwal, P. T. Schumacker, Nat. Rev. Cancer 2014, 14, 709.
- 30F. Weinberg, R. Hamanaka, W. W. Wheaton, S. Weinberg, J. J. M. Lopez, B. Kalyanaraman, G. M. Mutlu, G. R. S. Budinger, N. S. Chandel, Proc. Natl. Acad. Sci. USA 2010, 107, 8788.
- 31Z. Yu, Q. Sun, W. Pan, N. Li, B. Tang, ACS Nano 2015, 9, 11064.
- 32A. A. Molina, J. R. Leyva, A. L. Malo, J. Hernández, Nutr. Cancer 2014, 66, 167.
- 33L. F. Dong, P. Low, J. C. Dyason, X. F. Wang, L. Prochazka, P. K. Witting, R. Freeman, E. Swettenham, K. Valis, J. Liu, R. Zobalova, J. Turanek, D. R. Spitz, F. E. Domann, I. E. Scheffler, S. J. Ralph, J. Neuzil, Oncogene 2008, 27, 4324.
- 34R. Guo, H. Peng, Y. Tian, S. Shen, W. Yang, Small 2016, 12, 4541.
- 35C. Yue, Y. Yang, J. Song, G. Alfranca, C. Zhang, Q. Zhang, T. Yin, F. Pan, J. M. Fuente, D. Cui, Nanoscale 2017, 9, 11103.
- 36W. Lv, Z. Zhang, K. Y. Zhang, H. Yang, S. Liu, A. Xu, S. Guo, Q. Zhao, W. Huang, Angew. Chem., Int. Ed. 2016, 55, 9947.
- 37L. Yang, P. Gao, Y. Huang, X. Lu, Q. Chang, W. Pan, N. Li, B. Tang, Chin. Chem. Lett. 2019, 30, 1293.
- 38C. Li, Y. Wang, Y. Lu, J. Guo, C. Zhu, H. He, D. X, M. Pan, C. Su, Chin. Chem. Lett. 2020, 31, 1183.
- 39Y. Xiao, F. F. An, J. Chen, S. Xiong, X. H. Zhang, J. Mater. Chem. B 2018, 6, 3692.
- 40C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, L. W. Lo, Adv. Funct. Mater. 2009, 19, 215.
- 41G. R. Cherrick, S. W. Stein, C. M. Leevy, C. S. Davidson, J. Clin. Invest. 1960, 39, 592.
- 42W. Zhang, X. Hu, Q. Shen, D. Xing, Nat. Commun. 2019, 10, 1704.
- 43J. Stagg, M. J. Smyth, Oncogene 2010, 29, 5346.
- 44M. Reers, S. T. Smiley, C. M. Hartshorn, A. Chen, M. Lin, L. B. Chen, Methods Enzymol. 1995, 260, 406.
- 45N. Joza, S. A. Susin, E. Daugas, W. L. Stanford, S. K. Cho, C. Y. J. Li, T. Sasaki, A. J. Elia, H. Y. M. Cheng, L. Ravagnan, K. F. Ferri, N. Zamzami, A. Wakeham, R. Hakem, H. Yoshida, Y. Y. Kong, T. W. Mak, J. C. Z. Pflücker, G. Kroemer, J. M. Penninger, Nature 2001, 410, 549.
- 46D. He, L. Hai, X. He, X. Yang, H. W. Li, Adv. Funct. Mater. 2017, 27, 1704089.
- 47H. S. Jung, J. H. Lee, K. Kim, S. Koo, P. Verwilst, J.o. L. Sessler, C. Kang, J. S. Kim, J. Am. Chem. Soc. 2017, 139, 9972.
- 48W. Shao, C. Yang, F. Li, J. Wu, N. Wang, Q. Ding, J. Gao, D. Ling, Nano-Micro Lett. 2020, 12, 147.
- 49H. Cui, D. Hu, J. Zhang, G. Gao, Z. Chen, W. Li, P. Gong, Z. Sheng, L. Cai, ACS Appl. Mater. Interfaces 2017, 9, 25114.
- 50W. Zhou, H. Yu, L. J. Zhang, B. Wu, C. X. Wang, Q. Wang, K. Deng, R. X. Zhuo, S. W. Huang, Nanoscale 2017, 9, 17044.
- 51G. L. Semenza, Nat. Rev. Cancer 2003, 3, 721.
- 52P. Carmeliet, R. K. Jain, Nature 2000, 407, 249.