Nonhalide Materials for Efficient and Stable Perovskite Solar Cells
Corresponding Author
Jiangzhao Chen
Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Nam-Gyu Park
School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419 Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jiangzhao Chen
Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Nam-Gyu Park
School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419 Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Perovskite solar cells (PSCs) have witnessed great advancements in power conversion efficiency (PCE) and stability. Over the past several years, various nonhalide materials have been extensively developed to enhance both PCE and stability by including them in perovskite compositions, perovskite precursor materials, additives, post-treatment reagents, dopants for charge transport materials (CTMs), CTMs, and interfacial modifiers. In this review, various nonhalide materials reported for PSCs are described and the dependence of the photovoltaic performance on anions (or in part cations) in nonhalide materials is investigated. This review highlights the importance of synergistic and rational engineering of anions and cations of the nonhalide materials in order to maximize both PCE and stability of PSCs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
References
- 1H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, N. G. Park, Sci. Rep. 2012, 2, 591.
- 2https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf.
- 3N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476.
- 4J. Chen, Y. Rong, A. Mei, Y. Xiong, T. Liu, Y. Sheng, P. Jiang, L. Hong, Y. Guan, X. Zhu, X. Hou, M. Duan, J. Zhao, X. Li, H. Han, Adv. Energy Mater. 2016, 6, 1502009.
- 5J. Gu, F. Li, Z. Wang, Y. Xie, L. Yan, P. Zeng, H. Yu, M. Liu, Adv. Sci. 2020, 2002296.
10.1002/advs.202002296 Google Scholar
- 6W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Horantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, H. J. Snaith, Nat. Commun. 2015, 6, 6142.
- 7S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J. T.-W. Wang, Nature 2019, 571, 245.
- 8Y.-H. Lin, N. Sakai, P. Da, J. Wu, H. C. Sansom, A. J. Ramadan, S. Mahesh, J. Liu, R. D. Oliver, J. Lim, Science 2020, 369, 96.
- 9J. Chen, J.-Y. Seo, N.-G. Park, Adv. Energy Mater. 2018, 8, 1702714.
- 10N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, M. Grätzel, Science 2017, 358, 768.
- 11F. Giordano, A. Abate, J. P. C. Baena, M. Saliba, T. Matsui, S. H. Im, S. M. Zakeeruddin, M. K. Nazeeruddin, A. Hagfeldt, M. Graetzel, Nat. Commun. 2016, 7, 1.
- 12J.-Y. Seo, H.-S. Kim, S. Akin, M. Stojanovic, E. Simon, M. Fleischer, A. Hagfeldt, S. M. Zakeeruddin, M. Grätzel, Energy Environ. Sci. 2018, 11, 2985.
- 13S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao, C. Wang, Y. Zhou, Z. Yu, J. Zhao, Y. Gao, Science 2019, 365, 473.
- 14J. Chen, S. G. Kim, N. G. Park, Adv. Mater. 2018, 30, 1801948.
- 15X. Q. Zhang, G. Wu, W. F. Fu, M. C. Qin, W. T. Yang, J. L. Yan, Z. Q. Zhang, X. H. Lu, H. Z. Chen, Adv. Energy Mater. 2018, 8, 1702498.
- 16J. Y. Seo, T. Matsui, J. Luo, J. P. Correa-Baena, F. Giordano, M. Saliba, K. Schenk, A. Ummadisingu, K. Domanski, M. Hadadian, Adv. Energy Mater. 2016, 6, 1600767.
- 17Y. Wu, L. Wan, S. Fu, W. Zhang, X. Li, J. Fang, J. Mater. Chem. A 2019, 7, 14136.
- 18T. Zhang, L. Xie, L. Chen, N. Guo, G. Li, Z. Tian, B. Mao, Y. Zhao, Adv. Funct. Mater. 2017, 27, 1603568.
- 19S.-M. Bang, S. S. Shin, N. J. Jeon, Y. Y. Kim, G. Kim, T.-Y. Yang, J. Seo, ACS Energy Lett. 2020, 5, 1198.
- 20H. Zong, Y. H. Lou, M. Li, K. L. Wang, S. M. Jain, Z. K. Wang, Org. Electron. 2020, 77, 105495.
- 21J. Dagar, K. Hirselandt, A. Merdasa, A. Czudek, R. Munir, F. Zu, N. Koch, T. Dittrich, E. L. Unger, Sol. RRL 2019, 3, 1900088.
- 22J. Zhang, S. Wu, T. Liu, Z. Zhu, A. K. Y. Jen, Adv. Funct. Mater. 2019, 29, 1808833.
- 23Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H. L. Chan, F. Yan, Nat. Commun. 2016, 7, 1.
- 24Q. Jiang, D. Rebollar, J. Gong, E. L. Piacentino, C. Zheng, T. Xu, Angew. Chem. 2015, 127, 7727.
10.1002/ange.201503038 Google Scholar
- 25Y.-H. Chiang, M.-H. Li, H.-M. Cheng, P.-S. Shen, P. Chen, ACS Appl. Mater. Interfaces 2017, 9, 2403.
- 26F. K. Aldibaja, L. Badia, E. Mas-Marzá, R. S. Sánchez, E. M. Barea, I. Mora-Sero, J. Mater. Chem. A 2015, 3, 9194.
- 27C. Liang, H. Gu, Y. Xia, Z. Wang, X. Liu, J. Xia, S. Zuo, Y. Hu, X. Gao, W. Hui, Nat. Energy 2020, 1.
- 28Z. Zeng, J. Zhang, X. Gan, H. Sun, M. Shang, D. Hou, C. Lu, R. Chen, Y. Zhu, L. Han, Adv. Energy Mater. 2018, 8, 1801050.
- 29X. Yan, S. Hu, Y. Zhang, H. Li, C. Sheng, Sol. Energy Mater. Sol. Cells 2019, 191, 283.
- 30Q. Han, Y. Bai, J. Liu, K.-Z. Du, T. Li, D. Ji, Y. Zhou, C. Cao, D. Shin, J. Ding, Energy Environ. Sci. 2017, 10, 2365.
- 31W. Xu, G. Lei, C. Tao, J. Zhang, X. Liu, X. Xu, W. Y. Lai, F. Gao, W. Huang, Adv. Funct. Mater. 2018, 28, 1802320.
- 32W. Zhang, S. Pathak, N. Sakai, T. Stergiopoulos, P. K. Nayak, N. K. Noel, A. A. Haghighirad, V. M. Burlakov, D. W. deQuilettes, A. Sadhanala, W. Li, L. Wang, D. S. Ginger, R. H. Friend, H. J. Snaith, Nat. Commun. 2015, 6, 10030.
- 33J. H. Heo, M. S. You, M. H. Chang, W. Yin, T. K. Ahn, S.-J. Lee, S.-J. Sung, D. H. Kim, S. H. Im, Nano Energy 2015, 15, 530.
- 34B. Xu, J. Huang, H. Ågren, L. Kloo, A. Hagfeldt, L. Sun, ChemSusChem 2014, 7, 3252.
- 35J. Zhang, Q. Daniel, T. Zhang, X. Wen, B. Xu, L. Sun, U. Bach, Y. B. Cheng, ACS Nano 2018, 12, 10452.
- 36C. Chen, W. Zhang, J. Cong, M. Cheng, B. Zhang, H. Chen, P. Liu, R. Li, M. Safdari, L. Kloo, ACS Energy Lett. 2017, 2, 497.
- 37Z. Li, J. Tinkham, P. Schulz, M. Yang, D. H. Kim, J. Berry, A. Sellinger, K. Zhu, Adv. Energy Mater. 2017, 7, 1601451.
- 38B. Tan, S. R. Raga, A. S. Chesman, S. O. Fürer, F. Zheng, D. P. McMeekin, L. Jiang, W. Mao, X. Lin, X. Wen, Adv. Energy Mater. 2019, 9, 1901519.
- 39Q. Wu, W. Zhou, Q. Liu, P. Zhou, T. Chen, Y. Lu, Q. Qiao, S. Yang, ACS Appl. Mater. Interfaces 2016, 8, 34464.
- 40D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu, X. Wang, C. Li, S. F. Liu, R. P. Chang, Energy Environ. Sci. 2016, 9, 3071.
- 41K. Choi, J. Lee, H. I. Kim, C. W. Park, G.-W. Kim, H. Choi, S. Park, S. A. Park, T. Park, Energy Environ. Sci. 2018, 11, 3238.
- 42M. Zhang, W. Zhou, W. Hu, B. Li, Q. Qiao, S. Yang, ACS Appl. Mater. Interfaces 2020, 12, 12696.
- 43X. Zhu, M. Du, J. Feng, H. Wang, Z. Xu, L. Wang, S. Zuo, C. Wang, Z. Wang, C. Zhang, X. Ren, S. Priya, D. Yang, S. F. Liu, Angew. Chem. 2020, 4238, https://doi.org/10.1002/anie.202010987.
- 44S. Nagane, U. Bansode, O. Game, S. Chhatre, S. Ogale, Chem. Commun. 2014, 50, 9741.
- 45S. Nagane, S. Ogale, J. Phys. Chem. Lett. 2016, 7, 4757.
- 46C. H. Hendon, R. X. Yang, L. A. Burton, A. Walsh, J. Mater. Chem. A 2015, 3, 9067.
- 47Y. Sheng, A. Mei, S. Liu, M. Duan, P. Jiang, C. Tian, Y. Xiong, Y. Rong, H. Han, Y. Hu, J. Mater. Chem. A 2018, 6, 2360.
- 48A. Halder, R. Chulliyil, A. S. Subbiah, T. Khan, S. Chattoraj, A. Chowdhury, S. K. Sarkar, J. Phys. Chem. Lett. 2015, 6, 3483.
- 49M. K. Kim, T. Jeon, H. I. Park, J. M. Lee, S. A. Nam, S. O. Kim, CrystEngComm 2016, 18, 6090.
- 50S. Yuan, Y. Cai, S. Yang, H. Zhao, F. Qian, Y. Han, J. Sun, Z. Liu, S. Liu, Sol. RRL 2019, 3, 1900220.
- 51D. Forgács, M. Sessolo, H. J. Bolink, J. Mater. Chem. A 2015, 3, 14121.
- 52J. Qing, H.-T. Chandran, H.-T. Xue, Z.-Q. Guan, T.-L. Liu, S.-W. Tsang, M.-F. Lo, C.-S. Lee, Org. Electron. 2015, 27, 12.
- 53T.-Y. Hsieh, T.-C. Wei, K.-L. Wu, M. Ikegami, T. Miyasaka, Chem. Commun. 2015, 51, 13294.
- 54L. Zhao, D. Luo, J. Wu, Q. Hu, W. Zhang, K. Chen, T. Liu, Y. Liu, Y. Zhang, F. Liu, T. P. Russell, H. J. Snaith, R. Zhu, Q. Gong, Adv. Funct. Mater. 2016, 26, 3508.
- 55W. Kong, G. Wang, J. Zheng, H. Hu, H. Chen, Y. Li, M. Hu, X. Zhou, C. Liu, B. N. Chandrashekar, Sol. RRL 2018, 2, 1700214.
- 56D. Luo, L. Zhao, J. Wu, Q. Hu, Y. Zhang, Z. Xu, Y. Liu, T. Liu, K. Chen, W. Yang, Adv. Mater. 2017, 29, 1604758.
- 57Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, Z. Zhou, T. Noda, L. Han, Adv. Mater. 2017, 29, 1701073.
- 58D. Liu, Z. Shao, J. Gui, M. Chen, M. Liu, G. Cui, S. Pang, Y. Zhou, Chem. Commun. 2019, 55, 11059.
- 59G. Tang, P. You, Q. Tai, R. Wu, F. Yan, Sol. RRL 2018, 2, 1800066.
- 60W. Ke, C. Xiao, C. Wang, B. Saparov, H. S. Duan, D. Zhao, Z. Xiao, P. Schulz, S. P. Harvey, W. Liao, Adv. Mater. 2016, 28, 5214.
- 61Y. Yu, C. L. Wang, C. R. Grice, N. Shrestha, D. W. Zhao, W. Q. Liao, L. Guan, R. A. Awni, W. W. Meng, A. J. Cimaroli, K. Zhu, R. J. Ellingson, Y. Yan, ACS Energy Lett. 2017, 2, 1177.
- 62N. Cheng, W. Li, M. Zhang, H. Wu, S. Sun, Z. Zhao, Z. Xiao, Z. Sun, W. Zi, L. Fang, Curr. Appl. Phys. 2019, 19, 25.
- 63H. J. Zhang, M. H. Hou, Y. D. Xia, Q. L. Wei, Z. Wang, Y. C. Cheng, Y. H. Chen, W. Huang, J. Mater. Chem. A 2018, 6, 9264.
- 64X. Zhang, G. Wu, S. Yang, W. Fu, Z. Zhang, C. Chen, W. Liu, J. Yan, W. Yang, H. Chen, Small 2017, 13, 1700611.
- 65X. Lian, J. Chen, R. Fu, T.-K. Lau, Y. Zhang, G. Wu, X. Lu, Y. Fang, D. Yang, H. Chen, J. Mater. Chem. A 2018, 6, 24633.
- 66S. Wang, B. Yang, J. Han, Z. He, T. Li, Q. Cao, J. Yang, J. Suo, X. Li, Z. Liu, Energy Environ. Sci. 2020, 13, 5068.
- 67X. P. Zheng, B. Chen, J. Dai, Y. J. Fang, Y. Bai, Y. Z. Lin, H. T. Wei, X. C. Zeng, J. S. Huang, Nat. Energy 2017, 2, 1.
- 68X. Zheng, Y. Deng, B. Chen, H. Wei, X. Xiao, Y. Fang, Y. Lin, Z. Yu, Y. Liu, Q. Wang, J. Huang, Adv. Mater. 2018, 30, 1803428.
- 69W. R. Zhou, D. Li, Z. G. Xiao, Z. L. Wen, M. M. Zhang, W. P. Hu, X. J. Wu, M. T. Wang, W. H. Zhang, Y. L. Lu, S. H. Yang, S. F. Yang, Adv. Funct. Mater. 2019, 29, 1901026.
- 70H. Dong, Z. Wu, J. Xi, X. Xu, L. Zuo, T. Lei, X. Zhao, L. Zhang, X. Hou, A. K. Y. Jen, Adv. Funct. Mater. 2018, 28, 1704836.
- 71N. D. Pham, V. T. Tiong, D. Yao, W. Martens, A. Guerrero, J. Bisquert, H. Wang, Nano Energy 2017, 41, 476.
- 72W. Zhang, F. Zhang, B. Xu, Y. Li, L. Wang, B. Zhang, Y. Guo, J. M. Gardner, L. Sun, L. Kloo, ACS Appl. Mater. Interfaces 2020, 12, 33751.
- 73J. Chen, N.-G. Park, ACS Energy Lett. 2020, 5, 2742.
- 74D. H. Kang, N. G. Park, Adv. Mater. 2019, 31, 1805214.
- 75J. Chen, N. G. Park, Adv. Mater. 2019, 31, 1803019.
- 76W. H. Nguyen, C. D. Bailie, E. L. Unger, M. D. McGehee, J. Am. Chem. Soc. 2014, 136, 10996.
- 77S. Wang, Z. Huang, X. Wang, Y. Li, M. Günther, S. Valenzuela, P. Parikh, A. Cabreros, W. Xiong, Y. S. Meng, J. Am. Chem. Soc. 2018, 140, 16720.
- 78Y. Saygili, H.-S. Kim, B. Yang, J. Suo, A. B. Muñoz-Garcia, M. Pavone, A. Hagfeldt, ACS Energy Lett. 2020, 5, 1271.
- 79J. Chen, N.-G. Park, J. Phys. Chem. C 2018, 122, 14039.
- 80P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin, M. Grätzel, Nat. Commun. 2014, 5, 1.
- 81S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, Nano Lett. 2015, 15, 3723.
- 82J. Liu, S. K. Pathak, N. Sakai, R. Sheng, S. Bai, Z. Wang, H. J. Snaith, Adv. Mater. Interfaces 2016, 3, 1600571.
- 83N. Arora, M. I. Dar, S. Akin, R. Uchida, T. Baumeler, Y. Liu, S. M. Zakeeruddin, M. Grätzel, Small 2019, 15, 1904746.
- 84Y. Guo, J. Tao, F. Shi, X. Hu, Z. Hu, K. Zhang, W. Cheng, S. Zuo, J. Jiang, J. Chu, ACS Appl. Energy Mater. 2018, 1, 2000.