2D-MA3Sb2I9 Back Surface Field for Efficient and Stable Perovskite Solar Cells
Haobo Yuan
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
Search for more papers by this authorCorresponding Author
Jing Zhang
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLuting Yu
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
Search for more papers by this authorTonghui Guo
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
Search for more papers by this authorZequn Zhang
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
Search for more papers by this authorYanyan Wang
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
Search for more papers by this authorMinghui Shang
School of Materials Science and Engineering, Ningbo University of Technology, Zhejiang, 315016 China
Search for more papers by this authorXiaohui Liu
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
Search for more papers by this authorZiyang Hu
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
Search for more papers by this authorCorresponding Author
Yuejin Zhu
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Liyuan Han
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHaobo Yuan
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
Search for more papers by this authorCorresponding Author
Jing Zhang
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLuting Yu
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
Search for more papers by this authorTonghui Guo
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
Search for more papers by this authorZequn Zhang
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
Search for more papers by this authorYanyan Wang
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
Search for more papers by this authorMinghui Shang
School of Materials Science and Engineering, Ningbo University of Technology, Zhejiang, 315016 China
Search for more papers by this authorXiaohui Liu
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
Search for more papers by this authorZiyang Hu
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
Search for more papers by this authorCorresponding Author
Yuejin Zhu
Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, 315211 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Liyuan Han
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
In perovskite solar cells (PSCs), a defective perovskite (PVK) surface and cliff-like energy offset at the interface always slow down the charge extraction; meanwhile, interface ion diffusion causes oxidation of the metal electrode, inducing device instability. Here, the in situ grown 2D-(CH3NH2)3Sb2I9 (MA3Sb2I9) on the back surface of MAPbI3 results in a more robust interface. MA3Sb2I9 changes the MAPbI3 surface to p-type and thus acts like a back surface field to drive charge extraction and suppress recombination, resulting in an obviously higher fill factor (FF) = 0.8 and power conversion efficiency (PCE) = 20.4% of SnO2/MAPbI3/MA3Sb2I9/Spiro-OMeTAD (2,2′,7,7′-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene) PSC than the pure MAPbI3 device. More importantly, strong chemical bonding of SbI prohibits ion diffusion, largely enhancing the thermal stability and longtime stability. Here, special 2D-MA3Sb2I9 constructs’ robust band alignment and chemical environment at the interface are highlighted for efficient and stable PSCs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding authors upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202001090-sup-0001-SuppMat.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 2W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Science 2015, 348, 1234.
- 3Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460.
- 4J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, ACS Nano 2014, 8, 1674.
- 5Y. Bai, S. Xiao, C. Hu, T. Zhang, X. Meng, H. Lin, Y. Yang, S. Yang, Adv. Energy Mater. 2017, 7, 1701038.
- 6Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui, H. Chen, X. Yang, L. Han, Science 2019, 365, 687.
- 7P. Schulz, D. Cahen, A. Kahn, Chem. Rev. 2019, 119, 3349.
- 8Z. Yang, J. Dou, M. Wang, Sol. RRL 2018, 2, 1800177.
- 9H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542.
- 10F. Tan, H. Tan, M. I. Saidaminov, M. Wei, M. Liu, A. Mei, P. Li, B. Zhang, C.-S. Tan, X. Gong, Y. Zhao, A. R. Kirmani, Z. Huang, J. Z. Fan, R. Quintero-Bermudez, J. Kim, Y. Zhao, O. Voznyy, Y. Gao, F. Zhang, L. J. Richter, Z.-H. Lu, W. Zhang, E. H. Sargent, Adv. Mater. 2019, 31, 1807435.
- 11H. Tan, A. Jain, O. Voznyy, X. Lan, F. Pelayo García de Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E. H. Sargent, Science 2017, 355, 722.
- 12J. Zhang, D. Bai, Z. Jin, H. Bian, K. Wang, J. Sun, Q. Wang, S. Liu, Adv. Energy Mater. 2018, 8, 1703246.
- 13N. K. Noel, S. N. Habisreutinger, A. Pellaroque, F. Pulvirenti, B. Wenger, F. Zhang, Y.-H. Lin, O. G. Reid, J. Leisen, Y. Zhang, S. Barlow, S. R. Marder, A. Kahn, H. J. Snaith, C. B. Arnold, B. P. Rand, Energy Environ. Sci. 2019, 12, 3063.
- 14R. Wang, J. J. Xue, K. L. Wang, Z. K. Wang, Y. Q. Luo, D. Fenning, G. W. Xu, S. Nuryyeva, T. Y. Huang, Y. P. Zhao, J. L. Yang, J. H. Zhu, M. H. Wang, S. Tan, I. Yavuz, K. N. Houk, Y. Yang, Science 2019, 366, 1509.
- 15P.-L. Qin, G. Yang, Z.-W. Ren, S. H. Cheung, S. K. So, L. Chen, J. Hao, J. Hou, G. Li, Adv. Mater. 2018, 30, 1706126.
- 16N. Li, S. Tao, Y. Chen, X. Niu, C. K. Onwudinanti, C. Hu, Z. Qiu, Z. Xu, G. Zheng, L. Wang, Y. Zhang, L. Li, H. Liu, Y. Lun, J. Hong, X. Wang, Y. Liu, H. Xie, Y. Gao, Y. Bai, S. Yang, G. Brocks, Q. Chen, H. Zhou, Nat. Energy 2019, 4, 408.
- 17E. Bi, H. Chen, F. Xie, Y. Wu, W. Chen, Y. Su, A. Islam, M. Gratzel, X. Yang, L. Han, Nat. Commun. 2017, 8, 15330.
- 18K. Domanski, J.-P. Correa-Baena, N. Mine, M. K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, M. Gratzel, ACS Nano 2016, 10, 6306.
- 19Q. Wang, B. Chen, Y. Liu, Y. Deng, Y. Bai, Q. Dong, J. Huang, Energy Environ. Sci. 2017, 10, 516.
- 20J.-Y. Jeng, K.-C. Chen, T.-Y. Chiang, P.-Y. Lin, T.-D. Tsai, Y.-C. Chang, T.-F. Guo, P. Chen, T.-C. Wen, Y.-J. Hsu, Adv. Mater. 2014, 26, 4107.
- 21G. Xu, P. Bi, S. Wang, R. Xue, J. Zhang, H. Chen, W. Chen, X. Hao, Y. Li, Y. Li, Adv. Funct. Mater. 2018, 28, 1804427.
- 22F. Fu, S. Pisoni, T. P. Weiss, T. Feurer, A. Wackerlin, P. Fuchs, S. Nishiwaki, L. Zortea, A. N. Tiwari, S. Buecheler, Adv. Sci. 2018, 5, 1700675.
- 23J. Qing, X.-K. Liu, M. Li, F. Liu, Z. Yuan, E. Tiukalova, Z. Yan, M. Duchamp, S. Chen, Y. Wang, S. Bai, J.-M. Liu, H. J. Snaith, C.-S. Lee, T. C. Sum, F. Gao, Adv. Energy Mater. 2018, 8, 1800185.
- 24C. Battaglia, A. Cuevas, S. De Wolf, Energy Environ. Sci. 2016, 9, 1552.
- 25X. Gu, X. Yu, D. Yang, Scr. Mater. 2012, 66, 394.
- 26M. Nishida, T. Shindo, Y. Komatsu, S. Okamoto, M. Kaneiwa, T. Nanmori, Sol. Energy Mater. Sol. Cells 1997, 48, 131.
- 27H. D. Goldbach, A. Bink, R. E. I. Schropp, J. Non-Cryst. Solids 2006, 352, 1872.
- 28G. Paul, A. J. Pal, J. Phys. Chem. C 2019, 123, 13500.
- 29M. Lyu, J.-H. Yun, P. Chen, M. Hao, L. Wang, Adv. Energy Mater. 2017, 7, 1602512.
- 30J.-C. Hebig, I. Kuhn, J. Flohre, T. Kirchartz, ACS Energy Lett. 2016, 1, 309.
- 31B. Yang, Y.-J. Li, Y.-X. Tang, X. Mao, C. Luo, M.-S. Wang, W.-Q. Deng, K.-L. Han, J. Phys. Chem. Lett. 2018, 9, 3087.
- 32A. Singh, K. M. Boopathi, A. Mohapatra, Y. F. Chen, G. Li, C. W. Chu, ACS Appl. Mater. Interfaces 2018, 10, 2566.
- 33F. Jiang, D. Yang, Y. Jiang, T. Liu, X. Zhao, Y. Ming, B. Luo, F. Qin, J. Fan, H. Han, L. Zhang, Y. Zhou, J. Am. Chem. Soc. 2018, 140, 1019.
- 34Y. Yang, C. Liu, M. Cai, Y. Liao, Y. Ding, S. Ma, X. Liu, M. Guli, S. Dai, M. K. Nazeeruddin, ACS Appl. Mater. Interfaces 2020, 12, 17062.
- 35S.-Y. Kim, Y. Yun, S. Shin, J. H. Lee, Y.-W. Heo, S. Lee, Scr. Mater. 2019, 166, 107.
- 36W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, Science 2017, 356, 1376.
- 37W. Chen, Y. Zhou, L. Wang, Y. Wu, B. Tu, B. Yu, F. Liu, H.-W. Tam, G. Wang, A. B. Djurisic, L. Huang, Z. He, Adv. Mater. 2018, 30, 1800515.
- 38B. Saparov, F. Hong, J. P. Sun, H. S. Duan, W. W. Meng, S. Cameron, I. G. Hill, Y. F. Yan, D. B. Mitzi, Chem. Mater. 2015, 27, 5622.
- 39L. Zhang, X. Zhang, G. Lu, J. Phys. Chem. Lett. 2020, 11, 2910.
- 40S. Wu, R. Chen, S. Zhang, B. H. Babu, Y. Yue, H. Zhu, Z. Yang, C. Chen, W. Chen, Y. Huang, S. Fang, T. Liu, L. Han, W. Chen, Nat. Commun. 2019, 10, 1161.
- 41A. Guerrero, J. You, C. Aranda, Y. S. Kang, G. Garcia-Belrnonte, H. Zhou, J. Bisquert, Y. Yang, ACS Nano 2016, 10, 218.
- 42S. A. L. Weber, I. M. Hermes, S.-H. Turren-Cruz, C. Gort, V. W. Bergmann, L. Gilson, A. Hagfeldt, M. Graetzel, W. Tress, R. Berger, Energy Environ. Sci. 2018, 11, 2404.
- 43J. S. Yun, J. Seidel, J. Kim, A. M. Soufiani, S. Huang, J. Lau, N. J. Jeon, S. I. Seok, M. A. Green, A. Ho-Baillie, Adv. Energy Mater. 2016, 6, 1600330.