Synthesis of High-Performance Monolayer Molybdenum Disulfide at Low Temperature
Ji-Hoon Park
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorAng-Yu Lu
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorPin-Chun Shen
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorBong Gyu Shin
Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Search for more papers by this authorHaozhe Wang
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorNannan Mao
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorRenjing Xu
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
Search for more papers by this authorSoon Jung Jung
Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Search for more papers by this authorDonhee Ham
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
Search for more papers by this authorKlaus Kern
Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Institut de Physique, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Search for more papers by this authorYimo Han
Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005 USA
Search for more papers by this authorCorresponding Author
Jing Kong
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
E-mail: [email protected]
Search for more papers by this authorJi-Hoon Park
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorAng-Yu Lu
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorPin-Chun Shen
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorBong Gyu Shin
Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Search for more papers by this authorHaozhe Wang
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorNannan Mao
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorRenjing Xu
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
Search for more papers by this authorSoon Jung Jung
Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Search for more papers by this authorDonhee Ham
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
Search for more papers by this authorKlaus Kern
Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Institut de Physique, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Search for more papers by this authorYimo Han
Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005 USA
Search for more papers by this authorCorresponding Author
Jing Kong
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
The large-area synthesis of high-quality MoS2 plays an important role in realizing industrial applications of optoelectronics, nanoelectronics, and flexible devices. However, current techniques for chemical vapor deposition (CVD)-grown MoS2 require a high synthetic temperature and a transfer process, which limits its utilization in device fabrications. Here, the direct synthesis of high-quality monolayer MoS2 with the domain size up to 120 µm by metal-organic CVD (MOCVD) at a temperature of 320 °C is reported. Owing to the low-substrate temperature, the MOCVD-grown MoS2 exhibits low impurity doping and nearly unstrained properties on the growth substrate, demonstrating enhanced electronic performance with high electron mobility of 68.3 cm2 V−1 s−1 at room temperature. In addition, by tuning the precursor ratio, a better understanding of the MoS2 growth process via a geometric model of the MoS2 flake shape, is developed, which can provide further guidance for the synthesis of 2D materials.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smtd202000720-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, Z. L. Wang, Nature 2014, 514, 470.
- 2E. Singh, P. Singh, K. S. Kim, G. Y. Yeom, H. S. Nalwa, ACS Appl. Mater. Interfaces 2019, 11, 11061.
- 3B. Radisavljevic, M. B. Whitwick, A. Kis, ACS Nano 2011, 5, 9934.
- 4Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 2012, 6, 74.
- 5Q. Wan, M. T. Sharbati, J. R. Erickson, Y. Du, F. Xiong, Adv. Mater. Technol. 2019, 4, 1900037.
- 6S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J.-C. Idrobo, P. M. Ajayan, J. Lou, Nat. Mater. 2013, 12, 754.
- 7A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G.-H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, J. C. Hone, Nat. Mater. 2013, 12, 554.
- 8S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, J. H. Warner, Chem. Mater. 2014, 26, 6371.
- 9J. Jiang, K. Parto, W. Cao, K. Banerjee, IEEE J. Electron Devices Soc. 2019, 7, 878.
- 10X. Zhu, F. Zhuge, M. Li, K. Yin, Y. Liu, Z. Zuo, B. Chen, R.-W. Li, J. Phys. D: Appl. Phys. 2011, 44, 415104.
- 11K. McKenna, A. Shluger, V. Iglesias, M. Porti, M. Nafría, M. Lanza, G. Bersuker, Microelectron. Eng. 2011, 88, 1272.
- 12H. Huff, D. Gilmer, High Dielectric Constant Materials: VLSI MOSFET Applications, Springer Science & Business Media, Berlin 2006.
- 13C. Ahn, J. Lee, H.-U. Kim, H. Bark, M. Jeon, G. H. Ryu, Z. Lee, G. Y. Yeom, K. Kim, J. Jung, Y. Kim, C. Lee, T. Kim, Adv. Mater. 2015, 27, 5223.
- 14J. Mun, Y. Kim, I.-S. Kang, S. K. Lim, S. J. Lee, J. W. Kim, H. M. Park, T. Kim, S.-W. Kang, Sci. Rep. 2016, 6, 21854.
- 15Y. Zhao, J.-G. Song, G. H. Ryu, K. Y. Ko, W. J. Woo, Y. Kim, D. Kim, J. H. Lim, S. Lee, Z. Lee, J. Park, H. Kim, Nanoscale 2018, 10, 9338.
- 16H.-U. Kim, M. Kim, Y. Jin, Y. Hyeon, K. S. Kim, B.-S. An, C.-W. Yang, V. Kanade, J.-Y. Moon, G. Y. Yeom, D. Whang, J.-H. Lee, T. Kim, Appl. Surf. Sci. 2019, 470, 129.
- 17H.-Y. Cho, T. K. Nguyen, F. Ullah, J.-W. Yun, C. K. Nguyen, Y. S. Kim, Phys. B 2018, 532, 84.
- 18R. Frisenda, E. Navarro-Moratalla, P. Gant, D. P. De Lara, P. Jarillo-Herrero, R. V. Gorbachev, A. Castellanos-Gomez, Chem. Soc. Rev. 2018, 47, 53.
- 19K. Kang, K.-H. Lee, Y. Han, H. Gao, S. Xie, D. A. Muller, J. Park, Nature 2017, 550, 229.
- 20K. M. McCreary, A. T. Hanbicki, S. Singh, R. K. Kawakami, G. G. Jernigan, M. Ishigami, A. Ng, T. H. Brintlinger, R. M. Stroud, B. T. Jonker, Sci. Rep. 2016, 6, 35154.
- 21Z. Lin, Y. Zhao, C. Zhou, R. Zhong, X. Wang, Y. H. Tsang, Y. Chai, Sci. Rep. 2015, 5, 18596.
- 22K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C.-J. Kim, D. Muller, J. Park, Nature 2015, 520, 656.
- 23H. Kim, D. Ovchinnikov, D. Deiana, D. Unuchek, A. Kis, Nano Lett. 2017, 17, 5056.
- 24S. H. Choi, B. Stephen, J.-H. Park, J. S. Lee, S. M. Kim, W. Yang, K. K. Kim, Sci. Rep. 2017, 7, 1983.
- 25K. Zhang, B. M. Bersch, F. Zhang, N. C. Briggs, S. Subramanian, K. Xu, M. Chubarov, K. Wang, J. O. Lerach, J. M. Redwing, S. K. Fullerton-Shirey, M. Terrones, J. A. Robinson, ACS Appl. Mater. Interfaces 2018, 10, 40831.
- 26C. C. Cho, S. L. Bernasek, J. Appl. Phys. 1989, 65, 3035.
- 27Z. Jin, S. Shin, D. H. Kwon, S.-J. Han, Y.-S. Min, Nanoscale 2014, 6, 14453.
- 28F. Maury, F.-D. Duminica, F. Senocq, Chem. Vap. Deposition 2007, 13, 638.
- 29I. Usoltsev, R. Eichler, Y. Wang, J. Even, A. Yakushev, H. Haba, M. Asai, H. Brand, A. Di Nitto, C. E. Düllmann, F. Fangli, W. Hartmann, M. Huang, E. Jäger, D. Kaji, J. Kanaya, Y. Kaneya, J. Khuyagbaatar, B. Kindler, J. V. Kratz, J. Krier, Y. Kudou, N. Kurz, B. Lommel, S. Miyashita, K. Morimoto, K. Morita, M. Murakami, Y. Nagame, H. Nitsche, K. Ooe, T. K. Sato, M. Schädel, J. Steiner, P. Steinegger, T. Sumita, M. Takeyama, K. Tanaka, A. Toyoshima, K. Tsukada, A. Türler, Y. Wakabayashi, N. Wiehl, S. Yamaki, Z. Qin, Radiochim. Acta 2016, 104, 141.
- 30J. Shi, D. Ma, G.-F. Han, Y. Zhang, Q. Ji, T. Gao, J. Sun, X. Song, C. Li, Y. Zhang, X.-Y. Lang, Y. Zhang, Z. Liu, ACS Nano 2014, 8, 10196.
- 31A. Q. Tool, J. B. Saunders, J. Res. Natl. Bur. Stand. 1949, 42, 171.
- 32Y.-H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.-T. Chang, C.-S. Chang, M. Dresselhaus, T. Palacios, L.-J. Li, J. Kong, Nano Lett. 2013, 13, 1852.
- 33X. Ling, Y.-H. Lee, Y. Lin, W. Fang, L. Yu, M. S. Dresselhaus, J. Kong, Nano Lett. 2014, 14, 464.
- 34K. Leng, Z. Chen, X. Zhao, W. Tang, B. Tian, C. T. Nai, W. Zhou, K. P. Loh, ACS Nano 2016, 10, 9208.
- 35H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, D. Baillargeat, Adv. Funct. Mater. 2012, 22, 1385.
- 36C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, S. Ryu, ACS Nano 2010, 4, 2695.
- 37B. G. Shin, G. H. Han, S. J. Yun, H. M. Oh, J. J. Bae, Y. J. Song, C.-Y. Park, Y. H. Lee, Adv. Mater. 2016, 28, 9378.
- 38S. Chen, J. Gao, B. M. Srinivasan, G. Zhang, V. Sorkin, R. Hariharaputran, Y.-W. Zhang, npj Comput. Mater. 2019, 5, 28.
- 39H. Kim, C. Mattevi, M. R. Calvo, J. C. Oberg, L. Artiglia, S. Agnoli, C. F. Hirjibehedin, M. Chhowalla, E. Saiz, ACS Nano 2012, 6, 3614.
- 40M. Ohring, The Materials Science of Thin Films, Academic Press, New York 1992.
- 41A. Kobayashi, M. Steinberg, The Thermal Decomposition of Methane in a Tubular Reactor, Brookhaven National Laboratory (BNL), New York 1992.
- 42S. Y. Yang, G. W. Shim, S.-B. Seo, S.-Y. Choi, Nano Res. 2017, 10, 255.
- 43J. Wang, X. Cai, R. Shi, Z. Wu, W. Wang, G. Long, Y. Tang, N. Cai, W. Ouyang, P. Geng, B. N. Chandrashekar, A. Amini, N. Wang, C. Cheng, ACS Nano 2018, 12, 635.
- 44P. Deb, M. C. Cao, Y. Han, M. E. Holtz, S. Xie, J. Park, R. Hovden, D. A. Muller, Ultramicroscopy 2020, 215, 113019.
- 45A. Govind Rajan, J. H. Warner, D. Blankschtein, M. S. Strano, ACS Nano 2016, 10, 4330.
- 46W. H. Chae, J. D. Cain, E. D. Hanson, A. A. Murthy, V. P. Dravid, Appl. Phys. Lett. 2017, 111, 143106.
- 47A. Michail, N. Delikoukos, J. Parthenios, C. Galiotis, K. Papagelis, Appl. Phys. Lett. 2016, 108, 173102.
- 48H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund Jr, S. T. Pantelides, K. I. Bolotin, Nano Lett. 2013, 13, 3626.
- 49D. Lloyd, X. Liu, J. W. Christopher, L. Cantley, A. Wadehra, B. L. Kim, B. B. Goldberg, A. K. Swan, J. S. Bunch, Nano Lett. 2016, 16, 5836.
- 50D.-H. Lien, S. Z. Uddin, M. Yeh, M. Amani, H. Kim, J. W. Ager 3rd, E. Yablonovitch, A. Javey, Science 2019, 364, 468.
- 51S. Mouri, Y. Miyauchi, K. Matsuda, Nano Lett. 2013, 13, 5944.
- 52G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager Iii, M. Dubey, D. C. Chrzan, A. M. Minor, A. Javey, Nat. Commun. 2017, 8, 608.
- 53M. Amani, M. L. Chin, A. L. Mazzoni, R. A. Burke, S. Najmaei, P. M. Ajayan, J. Lou, M. Dubey, Appl. Phys. Lett. 2014, 104, 203506.
- 54J. Zhang, H. Yu, W. Chen, X. Tian, D. Liu, M. Cheng, G. Xie, W. Yang, R. Yang, X. Bai, D. Shi, G. Zhang, ACS Nano 2014, 8, 6024.
- 55R. Browning, P. Padigi, R. Solanki, D. J. Tweet, P. Schuele, D. Evans, Mater. Res. Express 2015, 2, 035006.
- 56J.-H. Huang, H.-H. Chen, P.-S. Liu, L.-S. Lu, C.-T. Wu, C.-T. Chou, Y.-J. Lee, L.-J. Li, W.-H. Chang, T.-H. Hou, Mater. Res. Express 2016, 3, 065007.
- 57C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat, E. Pop, Nano Lett. 2016, 16, 3824.
- 58D. Somvanshi, S. Kallatt, C. Venkatesh, S. Nair, G. Gupta, J. K. Anthony, D. Karmakar, K. Majumdar, Phys. Rev. B 2017, 96, 205423.
- 59J. Su, L. Feng, Y. Zhang, Z. Liu, Appl. Phys. Lett. 2017, 110, 161604.