Recent Progress on Electrocatalyst and Photocatalyst Design for Nitrogen Reduction
Mengqiao Li
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorHao Huang
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorJingxiang Low
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorChao Gao
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Ran Long
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Yujie Xiong
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
E-mail: [email protected], [email protected]Search for more papers by this authorMengqiao Li
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorHao Huang
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorJingxiang Low
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorChao Gao
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Ran Long
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Yujie Xiong
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
Ammonia is one of the most important chemicals due to its enormous applications in fertilizer production and as an energy carrier. The production of ammonia mainly relies on the traditional Haber–Bosch process under high temperature and pressure, leading to massive energy consumption and notable environmental issues. Recently, electrocatalytic and photocatalytic nitrogen (N2) fixation have emerged for achieving green production of ammonia owing to their features of environmental friendliness and cost-effectiveness. However, ammonia production through electrocatalysis and photocatalysis is still far away from practical applications. To facilitate the practical applications, a thorough understanding of nitrogen fixation is highly desired for the future design of high-efficiency catalysts. Here, the fundamental investigations on electrocatalytic and photocatalytic N2 reduction are summarized. Based on the fundamental understanding, the current approaches and design strategies for heterogeneous catalysts toward electrocatalytic and photocatalytic N2 reduction are then presented. Finally, the remaining challenges and future opportunities in this field are outlined, leveraging the existing understanding on structure–property relationships. It is anticipated that this review sheds some light on the development of advanced catalytic systems for ammonia production through N2 fixation.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1V. Smil, Nature 1999, 400, 415.
- 2R. W. Howarth, Harmful Algae 2008, 8, 14.
- 3 International Fertilizer Industry Association, International Fertilizer Association, Paris, France 2009.
- 4J. M. Herrera, G. Rubio, L. L. Häner, J. A. Delgado, C. A. Lucho-Constantino, S. Islas-Valdez, D. Pellet, Agronomy 2016, 6, 25.
- 5R. Service, Science 2018, 361, 120.
- 6J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, Science 2018, 360, eaar6611.
- 7L. Wang, M. Xia, H. Wang, K. Huang, C. Qian, C. T. Maravelias, G. A. Ozin, Joule 2018, 2, 1055.
- 8V. Smil, Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production, MIT Press, Cambridge, MA, USA 2004.
- 9R. B. Jackson, J. G. Canadell, C. Le Quéré, R. M. Andrew, J. I. Korsbakken, G. P. Peters, N. Nakicenovic, Nat. Clim. Change 2016, 6, 7.
- 10G. Schrauzer, T. Guth, J. Am. Chem. Soc. 1977, 99, 7189.
- 11N. Furuya, H. Yoshiba, J. Electroanal. Chem. Interfacial Electrochem. 1990, 291, 269.
- 12J. Liu, M. S. Kelley, W. Wu, A. Banerjee, A. P. Douvalis, J. Wu, Y. Zhang, G. C. Schatz, M. G. Kanatzidis, Proc. Natl. Acad. Sci. USA 2016, 113, 5530.
- 13K. A. Brown, D. F. Harris, M. B. Wilker, A. Rasmussen, N. Khadka, H. Hamby, S. Keable, G. Dukovic, J. W. Peters, L. C. Seefeldt, P. W. King, Science 2016, 352, 448.
- 14J. S. Anderson, J. Rittle, J. C. Peters, Nature 2013, 501, 84.
- 15Y. Roux, C. Duboc, M. Gennari, ChemPhysChem 2017, 18, 2606.
- 16M. Falcone, L. Chatelain, R. Scopelliti, I. Živković, M. Mazzanti, Nature 2017, 547, 332.
- 17J. A. Pool, E. Lobkovsky, P. J. Chirik, Nature 2004, 427, 527.
- 18V. Kyriakou, I. Garagounis, E. Vasileious, A. Vourros, M. Stoukides, Catal. Today 2017, 286, 2.
- 19Z. J. Schiffer, K. Manthiram, Joule 2017, 1, 10.
- 20H. Li, W. Bao, C. Xiu, Y. Zhang, H. Xu, Energy 2010, 35, 4273.
- 21N. Cao, G. Zheng, Nano Res. 2018, 11, 2992.
- 22M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S.-W. Kim, M. Hara, H. Hosono, Nat. Chem. 2012, 4, 934.
- 23J. B. Geri, J. P. Shanahan, N. K. Szymczak, J. Am. Chem. Soc. 2017, 139, 5952.
- 24R. J. Burford, M. D. Fryzuk, Nat. Rev. Chem. 2017, 1, 0026.
- 25A. E. Shilov, Russ. Chem. Bull. 2003, 52, 2555.
- 26D. Kumar, S. Pal, S. Krishnamurty, Phys. Chem. Chem. Phys. 2016, 18, 27721.
- 27M. J. Bezdek, P. J. Chirik, Angew. Chem., Int. Ed. 2016, 55, 7892.
- 28M. A. Shipman, M. D. Symes, Catal. Today 2017, 286, 57.
- 29C. J. van der Ham, M. T. Koper, D. G. Hetterscheid, Chem. Soc. Rev. 2014, 43, 5183.
- 30H.-P. Jia, E. A. Quadrelli, Chem. Soc. Rev. 2014, 43, 547.
- 31J.-H. Zhou, Y.-W. Zhang, React. Chem. Eng. 2018, 3, 591.
- 32J. H. Montoya, C. Tsai, A. Vojvodic, J. K. Nørskov, ChemSusChem 2015, 8, 2180.
- 33A. Banerjee, B. D. Yuhas, E. A. Margulies, Y. Zhang, Y. Shim, M. R. Wasielewski, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 2030.
- 34J. Li, H. Li, G. Zhan, L. Zhang, Acc. Chem. Res. 2017, 50, 112.
- 35X. Chen, N. Li, Z. Kong, W.-J. Ong, X. Zhao, Mater. Horiz. 2018, 5, 9.
- 36H. Li, J. Shang, J. Shi, K. Zhao, L. Zhang, Nanoscale 2016, 8, 1986.
- 37M. Shao, Y. Shao, W. Chen, K. L. Ao, R. Tong, Q. Zhu, I. N. Chan, W. F. Ip, X. Shi, H. Pan, Phys. Chem. Chem. Phys. 2018, 20, 14504.
- 38H. Li, J. Shang, Z. Ai, L. Zhang, J. Am. Chem. Soc. 2015, 137, 6393.
- 39G. Dong, W. Ho, C. Wang, J. Mater. Chem. A 2015, 3, 23435.
- 40H. Ma, Z. Shi, S. Li, N. Liu, Appl. Surf. Sci. 2016, 379, 309.
- 41S. Hu, X. Chen, Q. Li, Y. Zhao, W. Mao, Catal. Sci. Technol. 2016, 6, 5884.
- 42S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang, X. Meng, Z. Yang, H. Chen, J. Ye, Adv. Mater. 2017, 29, 1701774.
- 43C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen, G. Yu, Angew. Chem., Int. Ed. 2018, 57, 10246.
- 44X. Ren, G. Cui, L. Chen, F. Xie, Q. Wei, Z. Tian, X. Sun, Chem. Commun. 2018, 54, 8474.
- 45N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, X. Wu, L. Song, J. Zhu, Y. Xiong, J. Am. Chem. Soc. 2018, 140, 9434.
- 46Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang, J. Zhao, ACS Catal. 2018, 8, 1186.
- 47X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma, G. Zheng, Joule 2018, 2, 1610.
- 48D. Bao, Q. Zhang, F.-L. Meng, H.-X. Zhong, M.-M. Shi, Y. Zhang, J.-M. Yan, Q. Jiang, X.-B. Zhang, Adv. Mater. 2017, 29, 1604799.
- 49Y. Bai, L. Ye, T. Chen, L. Wang, X. Shi, X. Zhang, D. Chen, ACS Appl. Mater. Interfaces 2016, 8, 27661.
- 50H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, J. Am. Chem. Soc. 2017, 139, 10929.
- 51Y. Zhao, Y. Zhao, G. I. Waterhouse, L. Zheng, X. Cao, F. Teng, L.-Z. Wu, C.-H. Tung, D. O'Hare, T. Zhang, Adv. Mater. 2017, 29, 1703828.
- 52J. Yang, Y. Guo, R. Jiang, F. Qin, H. Zhang, W. Lu, J. Wang, J. C. M. Yu, J. Am. Chem. Soc. 2018, 140, 8497.
- 53G. Wu, Y. Gao, B. Zheng, Ceram. Int. 2016, 42, 6985.
- 54H. Ma, Z. Shi, Q. Li, S. Li, J. Phys. Chem. Solids 2016, 99, 51.
- 55S. Sun, X. Li, W. Wang, L. Zhang, X. Sun, Appl. Catal., B 2017, 200, 323.
- 56Y. Hao, X. Dong, S. Zhai, H. Ma, X. Wang, X. Zhang, Chem.-Eur. J. 2016, 22, 18722.
- 57Q. Zhang, S. Hu, Z. Fan, D. Liu, Y. Zhao, H. Ma, F. Li, Dalton Trans. 2016, 45, 3497.
- 58S. Cao, N. Zhou, F. Gao, H. Chen, F. Jiang, Appl. Catal., B 2017, 218, 600.
- 59L. Ye, C. Han, Z. Ma, Y. Leng, J. Li, X. Ji, D. Bi, H. Xie, Z. Huang, Chem. Eng. J. 2017, 307, 311.
- 60P. Qiu, C. Xu, N. Zhou, H. Chen, F. Jiang, Appl. Catal., B 2018, 221, 27.
- 61A. Shi, H. Li, S. Yin, Z. Hou, J. Rong, J. Zhang, Y. Wang, Appl. Catal., B 2018, 235, 197.
- 62X. Li, W. Wang, D. Jiang, S. Sun, L. Zhang, X. Sun, Chem. - Eur. J. 2016, 22, 13819.
- 63S. Hu, X. Chen, Q. Li, F. Li, Z. Fan, H. Wang, Y. Wang, B. Zheng, G. Wu, Appl. Catal., B 2017, 201, 58.
- 64P. Huang, W. Liu, Z. He, C. Xiao, T. Yao, Y. Zou, C. Wang, Z. Qi, W. Tong, B. Pan, S. Wei, Y. Xie, Sci. China: Chem. 2018, 61, 1187.
- 65S. Sun, Q. An, W. Wang, L. Zhang, J. Liu, W. A. Goddard III, J. Mater. Chem. A 2017, 5, 201.
- 66H. Wang, L. Wang, Q. Wang, S. Ye, W. Sun, Y. Shao, Z. Jiang, Q. Qiao, Y. Zhu, P. Song, D. Li, L. He, X. Zhang, J. Yuan, T. Wu, G. A. Qzin, Angew. Chem., Int. Ed. 2018, 57, 12360.
- 67S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan, Q. Jiang, Adv. Mater. 2017, 29, 1700001.
- 68H. Cheng, L.-X. Ding, G.-F. Chen, L. Zhang, J. Xue, H. Wang, Adv. Mater. 2018, 1803694, .
- 69S. L. Foster, S. I. P. Bakovic, R. D. Duda, S. Maheshwari, R. D. Milton, S. D. Minteer, M. J. Janik, J. N. Renner, L. F. Greenlee, Nat. Catal. 2018, 1, 490.
- 70M.-M. Shi, D. Bao, B.-R. Wulan, Y.-H. Li, Y.-F. Zhang, J.-M. Yan, Q. Jiang, Adv. Mater. 2017, 29, 1606550.
- 71Q. Qin, T. Heil, M. Antonietti, M. Oschatz, Small Methods 2018, 1800202, .
- 72Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si, J. Zeng, Adv. Mater. 2018, 30, 1803498.
- 73J. Yang, Y. Guo, W. Lu, R. Jiang, J. Wang, Adv. Mater. 2018, 1802227, .
- 74A. J. Medford, M. C. Hatzell, ACS Catal. 2017, 7, 2624.
- 75C. Gao, J. Wang, H. Xu, Y. Xiong, Chem. Soc. Rev. 2017, 46, 2799.
- 76C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou, G. Yu, Angew. Chem. 2018, 130, 6181.
10.1002/ange.201801538 Google Scholar
- 77X. Zhang, R.-M. Kong, H. Du, L. Xia, F. Qu, Chem. Commun. 2018, 54, 5323.
- 78M. Ali, F. Zhou, K. Chen, C. Kotzur, C. Xiao, L. Bourgeois, X. Zhang, D. R. MacFarlane, Nat. Commun. 2016, 7, 11335.
- 79T. Oshikiri, K. Ueno, H. Misawa, Angew. Chem., Int. Ed. 2016, 55, 3942.
- 80X. Yang, J. Nashi, J. Anibal, M. Dunwell, S. Kattel, E. Stavitski, K. Attenkofer, J. G. Chen, Y. Yan, B. Xu, J. Am. Chem. Soc. 2018, 140, 13387.
- 81X. Cui, C. Tang, X.-M. Liu, C. Wang, W. Ma, Q. Zhang, Chem. - Eur. J. 2018, 24, 1.
- 82Z. Wang, Y. Li, H. Yu, Y. Xu, H. Xue, X. Li, H. Wang, L. Wang, Chem. - Eur. J. 2018, 11, 3480.
10.1002/cssc.201801444 Google Scholar
- 83J. Han, X. Ji, X. Ren, G. Cui, L. Li, F. Xie, H. Wang, B. Li, X. Sun, J. Mater. Chem. A 2018, 6, 12974.
- 84L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang, X. Sun, Adv. Mater. 2018, 30, 1800191.
- 85D. Yang, T. Chen, Z. Wang, J. Mater. Chem. A 2017, 5, 18967.
- 86B. Cui, J. Zhang, S. Liu, X. Liu, W. Xiang, L. Liu, H. Xin, M. J. Lefler, S. Licht, Green Chem. 2017, 19, 298.
- 87S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su, G. Centi, Angew. Chem., Int. Ed. 2017, 56, 2699.
- 88Q. Liu, X. Zhang, B. Zhang, Y. Luo, G. Cui, F. Xie, X. Sun, Nanoscale 2018, 10, 14386.
- 89Y. Yao, S. Zhu, H. Wang, H. Li, M. Shao, J. Am. Chem. Soc. 2018, 140, 1496.
- 90H. K. Lee, C. S. L. Koh, Y. H. Lee, C. Liu, I. Y. Phang, X. Han, C.-K. Tsung, X. Y. Ling, Sci. Adv. 2018, 4, eaar3208.
- 91B. H. Suryanto, C. S. Kang, D. Wang, C. Xiao, F. Zhou, L. M. Azofra, L. Cavallo, X. Zhang, D. R. MacFarlane, ACS Energy Lett. 2018, 3, 1219.
- 92F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang, D. R. MacFarlane, Energy Environ. Sci. 2017, 10, 2516.
- 93P. Wang, F. Chang, W. Gao, J. Guo, G. Wu, T. He, P. Chen, Nat. Chem. 2017, 9, 64.
- 94Y. Abghoui, E. Skúlason, Catal. Today 2017, 286, 69.
- 95Y. Abghoui, E. Skúlason, Catal. Today 2017, 286, 78.
- 96H. Liu, Z. Fang, Y. Su, Y. Suo, S. Huang, Y. Zhang, K. Ding, Chem. - Asian J. 2018, 13, 799.
- 97X.-L. Ma, J.-C. Liu, H. Xiao, J. Li, J. Am. Chem. Soc. 2018, 140, 46.
- 98X.-F. Li, Q.-K. Li, J. Cheng, L. Liu, Q. Yan, Y. Wu, X.-H. Zhang, Z.-Y. Wang, Q. Qiu, Y. Luo, J. Am. Chem. Soc. 2016, 138, 8706.
- 99J. N. Renner, L. F. Greenlee, K. E. Ayres, A. M. Herring, Interface Mag. 2015, 24, 51.
- 100C. Li, T. Wang, Z.-J. Zhao, W. Yang, J.-F. Li, A. Li, Z. Yang, G. A. Ozin, J. Gong, Angew. Chem., Int. Ed. 2018, 57, 5278.
- 101R. Li, Chin. J. Catal. 2018, 39, 1180.
- 102X. Cui, C. Tang, Q. Zhang, Adv. Energy Mater. 2018, 8, 1800369.
- 103N. Zhang, R. Long, C. Gao, Y. Xiong, Sci. China Mater. 2018, 61, 771.