Enhancing High-Temperature Capacitive Energy Storage Performance via Atom-Doped Carbon Polymer Dots Engineered Dual-Barrier
Huan Wang
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorHang Luo
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorCorresponding Author
Ru Guo
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJiajun Peng
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorGuanghu He
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorDeng Hu
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorCorresponding Author
Xiwen Yang
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorDou Zhang
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorHuan Wang
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorHang Luo
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorCorresponding Author
Ru Guo
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJiajun Peng
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorGuanghu He
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorDeng Hu
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorCorresponding Author
Xiwen Yang
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorDou Zhang
Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorAbstract
Advances in high-temperature-resistant polymer dielectric present a crucial opportunity for next-generation electrostatic energy storage in power electronics. However, the practical application of polymer dielectrics at elevated temperatures (above 150 °C) is largely limited due to the exponential increase in conduction loss under the high thermo-electric field. In this work, N and S atom-doped carbon polymer dots (NSCPDs) engineered dual-barrier to address the critical issue of conduction loss is utilized. Specifically, the doping elements of N and S heteroatoms enhance the NSCPDs' electron affinity and facilitate the formation of deeper traps with energy levels of 1.60 eV compared to pristine CPDs (1.07 eV). Furthermore, the Coulomb blocking effect induced by quantum-sized NSCPDs can capture electrons and tortuous the electron transport path. Therefore, this constructed “Coulomb blockage-trap barrier” dual energy barrier effectively suppresses carrier migration and lowers leakage current, enabling the 0.5 wt.% NSCPDs/PEI composite to attain a remarkable energy storage density of 3.49 J cm3 at 200 °C, which represents a 60% enhancement compared to pristine PEI (2.21 J cm3). The composite simultaneously demonstrates excellent efficiency (η > 90%) and robust cycling stability over 105 cycles. This study provides a generalizable materials design paradigm for the development of high-temperature polymer dielectrics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202504788-sup-0001-SuppMat.docx12.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Li, P. H. Hu, J. Y. Jiang, J. Y. Pan, C. W. Nan, Y. Shen, Adv. Mater. 2025, 26, 2411507.
- 2G. H. He, H. Luo, Y. Liu, Y. T. Wan, B. Peng, D. Hu, F. Wang, X. N. Li, J. J. Peng, H. Wang, D. Zhang, Energy Environ. Sci. 2025, 18, 2405.
- 3T. D. Zhang, H. Sun, C. Yin, Y. H. Jung, S. W. Min, Y. Zhang, C. H. Zhang, Q. G. Chen, K. J. Lee, Q. G. Chi, Prog. Mater. Sci. 2023, 140, 101207.
- 4B. Peng, P. B. Wang, H. Luo, G. H. He, H. R. Xie, Y. Liu, S. Chen, X. N. Li, Y. T. Wan, R. Guo, Mater. Horizons 2024, 12, 1223.
- 5D. Hu, H. Luo, Y. Liu, F. Wang, B. Peng, X. N. Li, H. Wang, G. H. He, D. Zhang, Chem. Eng. J. 2024, 498, 155398.
- 6Z. L. Chang, L. Lei, L. W. Zhu, Y. Quan, Z. L. Ren, Y. H. Qian, D. Dastan, Z. C. Shi, Mater. Horiz. 2024, 12, 284.
- 7H. J. Ye, W. Gao, L. X. Xu, Colloids Surf., A 2024, 687, 133479.
- 8Y. Zhou, Y. J. Zhu, W. H. Xu, Q. Wang, Adv. Energy Mater. 2023, 13, 2203961.
- 9M. Z. Yang, M. F. Guo, E. R. Xu, W. B. Ren, D. Y. Wang, S. Li, S. J. Zhang, C. W. Nan, Y. Shen, Nat. Nanotechnol. 2024, 19, 588.
- 10C. H. Zhang, X. Tong, T. D. Zhang, Y. Zhang, Y. Q. Zhang, X. Zhang, C. Tang, Q. G. Chi, Chem. Eng. J. 2024, 491, 151634.
- 11S. Ren, S. H. Yuan, M. K. Huang, L. X. Pang, W. B. Li, X. L. Wang, D. Zhou, Y. J. Zhao, J. Energy Storage 2024, 95, 112524.
- 12Z. T. Ba, L. L. Ma, H. Liu, C. Li, X. C. Chen, X. Wen, P. G. Song, Q. Q. Lei, Compos. Commun. 2025, 54, 102266.
- 13G. C. Rui, J. Bernholc, S. H. Zhang, Q. M. Zhang, Adv. Mater. 2024, 36, 2311739.
- 14F. Wang, H. Wang, X. M. Shi, C. L. Diao, C. L. Li, W. K. Li, X. Liu, H. W. Zheng, H. B. Huang, X. G. Li, Chem. Eng. J. 2024, 485, 149972.
- 15K. Y. Ni, W. Zhao, J. Bian, X. K. Li, K. C. Yang, S. Y. Jing, C. Wei, H. L. Lin, D. Q. Chen, Polym. Compos. 2024, 45, 12256.
- 16J. W. Zha, M. Y. Xiao, B. Q. Wan, X. M. Wang, Z. M. Dang, G. Chen, Prog. Mater. Sci. 2023, 140, 101208.
- 17H. Li, D. Ai, L. L. Ren, B. Yao, Z. B. Han, Z. H. Shen, J. J. Wang, L. Q. Chen, Q. Wang, Adv. Mater. 2019, 31, 1900875.
- 18B. Z. Sun, P. H. Hu, X. M. Ji, M. Z. Fan, L. Zhou, M. F. Guo, S. He, Y. Shen, Small 2022, 18, 2202421.
- 19A. Azizi, M. R. Gadinski, Q. Li, M. Abu AlSaud, J. J. Wang, Y. Wang, B. Wang, F. H. Liu, L. Q. Chen, N. Alem, Q. Wang, Adv. Mater. 2017, 29, 1701864.
- 20Y. K. Zhu, Y. J. Zhu, X. Y. Huang, J. Chen, Q. Li, J. L. He, P. K. Jiang, Adv. Energy Mater. 2019, 9, 1903062.
- 21M. H. Yang, Z. P. Wang, Y. L. Zhao, Z. R. Liu, H. Pang, Z. M. Dang, Adv. Mater. 2024, 36, 2309640.
- 22Z. L. Xie, K. Le, H. Li, X. Pang, T. L. Xu, V. Altoe, L. M. Klivansky, Y. F. Wang, Z. Y. Huang, S. W. Shelton, X. D. Gu, P. Liu, Z. R. Peng, Y. Liu, Adv. Funct. Mater. 2024, 34, 2314910.
- 23X. X. Liu, D. Y. Chen, J. L. Li, S. L. Zhong, Y. Feng, D. Yue, D. W. Sheng, H. N. Chen, X. D. Hao, Z. M. Dang, Adv. Mater. 2024, 36, 2402239.
- 24B. Zhang, X. M. Chen, Z. Pan, P. Liu, M. M. Mao, K. X. Song, Z. Mao, R. Sun, D. W. Wang, S. J. Zhang, Adv. Funct. Mater. 2023, 33, 2210050.
- 25S. Y. Zhou, H. Zhao, N. Zhang, L. Yin, J. B. Bai, Chem. Eng. J. 2025, 504, 158941.
- 26S. Y. Tao, T. L. Feng, C. Y. Zheng, S. J. Zhu, B. Yang, J. Phys. Chem. Lett. 2019, 10, 5182.
- 27L. Li, Y. T. Li, Y. Ye, R. T. Guo, A. N. Wang, G. Q. Zou, H. S. Hou, X. B. Ji, ACS Nano 2021, 15, 6872.
- 28J. L. Ding, Y. Zhou, W. H. Xu, F. Yang, D. Y. Zhao, Y. H. Zhang, Z. H. Jiang, Q. Wang, Nano-Micro Lett. 2024, 16, 59.
- 29A. D. Zhao, Z. W. Chen, C. Q. Zhao, N. Gao, J. S. Ren, X. G. Qu, Carbon 2015, 85, 309.
- 30J. F. Dong, L. Li, P. Q. Qiu, Y. P. Pan, Y. J. Niu, L. Sun, Z. Z. Pan, Y. Q. Liu, L. Tan, X. W. Xu, C. Xu, G. F. Luo, Q. Wang, H. Wang, Adv. Mater. 2023, 35, 2211487.
- 31L. W. Wang, X. Y. Huang, Y. K. Zhu, P. K. Jiang, Phys. Chem. Chem. Phys. 2018, 20, 5001.
- 32H. X. Liu, X. Zhong, Q. Pan, Y. Zhang, W. T. Deng, G. Q. Zou, H. S. Hou, X. B. Ji, Coord. Chem. Rev. 2024, 498, 215468.
- 33X. Cheng, F. M. Ran, Y. F. Huang, R. T. Zheng, H. X. Yu, J. Shu, Y. Xie, Y. B. He, Adv. Funct. Mater. 2021, 31, 2100311.
- 34F. Wang, J. M. Cai, C. C. Yang, H. Luo, X. A. Li, H. S. Hou, G. Q. Zou, D. Zhang, Small 2023, 19, 2300510.
- 35J. L. Ding, W. H. Xu, X. B. Zhu, Z. Liu, Y. H. Zhang, Z. H. Jiang, Nano Res. 2023, 16, 10183.
- 36X. Yu, R. Yang, W. Q. Zhang, X. Yang, C. Ma, K. X. Sun, G. Y. Shen, F. C. Lv, S. D. Fan, Chem. Eng. J. 2024, 496, 154056.
- 37R. Wang, H. S. Xu, S. Cheng, J. J. Liang, B. Gou, J. A. Zhou, J. Fu, C. Z. Xie, J. L. He, Q. Li, Energy Storage Mater. 2022, 49, 339.
- 38H. Li, Y. Zhou, Y. Liu, L. Li, Y. Liu, Q. Wang, Chem. Soc. Rev. 2021, 50, 6369.
- 39H. L. Jiang, D. Y. Zheng, H. J. Ye, L. X. Xu, Adv. Funct. Mater. 2025, 35, 10.
- 40C. Wu, A. A. Deshmukh, Z. Z. Li, L. H. Chen, A. Alamri, Y. F. Wang, J. R. Zhou, O. Yassin, R. Ramprasad, G. A. Sotzing, Y. Cao, IEEE Trns. Dielectr. Electr. Insul. 2021, 28, 1468.
- 41M. C. Yang, S. J. Wang, J. Fu, Y. J. Zhu, J. J. Liang, S. Cheng, S. X. Hu, J. Hu, J. L. He, Q. Li, Adv. Mater. 2023, 35, 2301936.
- 42C. F. Yan, Y. T. Wan, H. P. Long, H. Luo, X. Liu, H. Luo, S. Chen, Adv. Funct. Mater. 2024, 34, 2312238.
- 43Y. Y. Yu, C. Yang, Y. Jiang, Z. T. Shang, J. D. Zhu, J. H. Zhang, M. J. Jiang, Adv. Energy Mater. 2025, 15, 2501280.
- 44Q. T. Wang, J. L. Ding, W. Jiang, Z. H. Jiang, L. Jiang, Y. H. Zhou, Y. H. Zhang, Adv. Funct. Mater. 2025, 35, 2414616.
- 45H. R. Xie, H. Luo, Y. Liu, R. Guo, X. B. Ji, H. S. Hou, D. Zhang, Chem. Eng. J. 2022, 433, 133601.
- 46Z. Li, J. Wang, J. J. Zou, S. X. Li, X. Zhen, Z. H. Shen, B. W. Li, X. Zhang, C. W. Nan, Mater. Horiz. 2024, 11, 4472.
- 47J. Y. Lin, Y. Yuan, M. Wang, X. L. Yang, G. M. Yang, Nanomaterials 2023, 13, 1932.
- 48J. C. Yang, M. T. Yang, X. R. Liu, M. K. Zhang, M. K. Gao, L. Chen, J. C. Su, Y. Huang, Y. Q. Zhang, B. X. Shen, Electrochim. Acta 2023, 439, 141666.
- 49S. Luryi, Appl. Phys. Lett. 1988, 52, 501.