Stabilize Perovskite Precursors and Inhibit Intermediates for High Performing Perovskite Solar Cells
Zhiqian Yang
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 China
University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorAiqing Sun
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 China
University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorYingke Ren
College of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018 China
Search for more papers by this authorZhaoqian Li
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 China
Search for more papers by this authorLi'e Mo
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 China
Search for more papers by this authorCorresponding Author
Hong Zhang
Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan, Hebei, 056038 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yang Huang
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 China
Anhui Institute of lnnovation for Industrial Technology, Hefei, Anhui, 230088 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Linhua Hu
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 China
University of Science and Technology of China, Hefei, Anhui, 230026 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZhiqian Yang
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 China
University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorAiqing Sun
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 China
University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorYingke Ren
College of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018 China
Search for more papers by this authorZhaoqian Li
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 China
Search for more papers by this authorLi'e Mo
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 China
Search for more papers by this authorCorresponding Author
Hong Zhang
Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan, Hebei, 056038 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yang Huang
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 China
Anhui Institute of lnnovation for Industrial Technology, Hefei, Anhui, 230088 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Linhua Hu
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 China
University of Science and Technology of China, Hefei, Anhui, 230026 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Significant power conversion efficiency (PCEs) advancements have been made in perovskite solar cells (PSCs). However, the degraded precursor can severely affect the crystallinity and reproducibility of the films, and the stability of the perovskite precursor and the intermediate phases during film growth remains a considerable hurdle. Here the saccharin sodium (SacS) is introduced into the perovskite precursor. Benefiting from the electron-rich sulfonyl (O═S═O) and carbonyl (C═O) groups, the SacS molecule formed a stable complex with lead(II) iodide (PbI2) in the precursor, which retarded the degradation and colloidal aggregation of the precursor and suppresses the formation of unfavorable intermediate phases during film growth. The strong interaction reduces the surface energy of the nuclei and promotes the formation of larger-sized nuclei, resulting in high-quality films with vertical orientation. This approach significantly improves the power conversion efficiency (PCE) of the device to 24.8% and bolsters the long-term stability.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202503279-sup-0001-SuppMat.docx33.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Yang, H. Chen, C. Liu, J. Xu, C. Huang, C. D. Malliakas, H. Wan, A. S. R. Bati, Z. Wang, R. P. Reynolds, I. W. Gilley, S. Kitade, T. E. Wiggins, S. Zeiske, S. Suragtkhuu, M. Batmunkh, L. X. Chen, B. Chen, M. G. Kanatzidis, E. H. Sargent, Science 2024, 386, 898.
- 2D. Gao, B. Li, Q. Liu, C. Zhang, Z. Yu, S. Li, J. Gong, L. Qian, F. Vanin, K. Schutt, M. A. Davis, A. F. Palmstrom, S. P. Harvey, N. J. Long, J. M. Luther, X. C. Zeng, Z. Zhu, Science 2024, 386, 187.
- 3C. Liu, Y. Yang, H. Chen, I. Spanopoulos, A. S. R. Bati, I. W. Gilley, J. Chen, A. Maxwell, B. Vishal, R. P. Reynolds, T. E. Wiggins, Z. Wang, C. Huang, J. Fletcher, Y. Liu, L. X. Chen, S. De Wolf, B. Chen, D. Zheng, T. J. Marks, A. Facchetti, E. H. Sargent, M. G. Kanatzidis, Nature 2024, 633, 359.
- 4H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou, Y. Yang, Q. Zhou, A. S. R. Bati, H. Wan, Z. Wang, L. Zeng, J. Wang, P. Serles, Y. Liu, S. Teale, Y. Liu, M. I. Saidaminov, M. Li, N. Rolston, S. Hoogland, T. Filleter, M. G. Kanatzidis, B. Chen, Z. Ning, E. H. Sargent, Science 2024, 384, 189.
- 5S. Zhou, S. Fu, C. Wang, W. Meng, J. Zhou, Y. Zou, Q. Lin, L. Huang, W. Zhang, G. Zeng, D. Pu, H. Guan, C. Wang, K. Dong, H. Cui, S. Wang, T. Wang, G. Fang, W. Ke, Nature 2023, 624, 69.
- 6S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang, L. Zhan, X. Jiang, Y. Li, X. Ji, S. Liu, M. Yu, F. Yu, Y. Zhang, R. Wu, Z. Liu, Z. Ning, D. Neher, L. Han, Y. Lin, H. Tian, W. Chen, M. Stolterfoht, L. Zhang, W.-H. Zhu, Y. Wu, Science 2023, 380, 404.
- 7National Renewable Energy Laboratory Best Research-Cell Efficiencies Chart, https://www.nrel.gov/pv/cell-efficiency.html (accessed: March 2025).
- 8W.-C. Qiao, J.-Q. Liang, W. Dong, K. Ma, X. L. Wang, Y.-F. Yao, NPG Asia Mater 2022, 14, 49.
- 9W. Hui, L. Chao, H. Lu, F. Xia, Q. Wei, Z. Su, T. Niu, L. Tao, B. Du, D. Li, Y. Wang, H. Dong, S. Zuo, B. Li, W. Shi, X. Ran, P. Li, H. Zhang, Z. Wu, C. Ran, L. Song, G. Xing, X. Gao, J. Zhang, Y. Xia, Y. Chen, W. Huang, Science 2021, 371, 1359.
- 10H. Liu, N. Li, Z. Chen, S. Tao, C. Li, L. Jiang, X. Niu, Q. Chen, F. Wang, Y. Zhang, Z. Huang, T. Song, H. Zhou, Adv. Mater. 2022, 34, 2204458.
- 11R. Tian, C. Liu, Y. Meng, Y. Wang, R. Cao, B. Tang, D. Walsh, H. Do, H. Wu, K. Wang, K. Sun, S. Yang, J. Zhu, X. Li, Z. Ge, Adv. Mater. 2024, 36, 2309998.
- 12Z. He, S. Zhang, Y. Gao, Q. Geng, X. Jia, S. Yang, Z. Zhang, Y. Zheng, Y. Hu, C. Yao, Q. Zhang, J. Energy Chem. 2023, 87, 390.
- 13B. Zhou, P. Zhao, J. Guo, Y. Qiao, S. Hu, X. Guo, J. Liu, C. Li, Nano Energy 2024, 124, 109487.
- 14Y. Yin, Y. Zhou, S. Fu, Y.-C. Lin, X. Zuo, A. Raut, Y. Zhang, E. H. R. Tsai, M. Li, F. Lu, C. Zhou, T.-D. Li, K. Kisslinger, M. Cotlet, C.-Y. Nam, M. H. Rafailovich, ACS Nano 2024, 18, 30816.
- 15Y. Yang, C. Liu, Y. Ding, B. Ding, J. Xu, A. Liu, J. Yu, L. Grater, H. Zhu, S. S. Hadke, V. K. Sangwan, A. S. R. Bati, X. Hu, J. Li, S. M. Park, M. C. Hersam, B. Chen, M. K. Nazeeruddin, M. G. Kanatzidis, E. H. Sargent, Nat. Energy 2024, 9, 316.
- 16M. E. O'Kane, J. A. Smith, T. I. Alanazi, E. J. Cassella, O. Game, S. van Meurs, D. G. Lidzey, ChemSusChem 2021, 14, 2537.
- 17W. M. J. Franssen, B. J. Bruijnaers, V. H. L. Portengen, A. P. M. Kentgens, ChemPhysChem 2018, 19, 3107.
- 18Z. Zhang, Y. Yang, Z. Huang, Q. Xu, S. Zhu, M. Li, P. Zhao, H. Cui, S. Li, X. Jin, X. Wu, M. Han, Y. Zhang, N. Zhao, C. Zou, Q. Liang, L. Xian, J. Hu, C. Zhu, Y. Chen, Y. Bai, Y. Li, Q. Chen, H. Zhou, B. Zhang, Y. Jiang, Energy Environ. Sci. 2024, 17, 7182.
- 19C. A. Aranda, A. O. Alvarez, V. S. Chivrony, C. Das, M. Rai, M. Saliba, Joule 2024, 8, 241.
- 20J.-Y. Go, H. Zhu, Y. Reo, H. Kim, A. Liu, Y.-Y. Noh, ACS Appl. Mater. Interfaces 2022, 14, 9363.
- 21B. Ding, Y. Ding, J. Peng, J. Romano-deGea, L. E. K. Frederiksen, H. Kanda, O. A. Syzgantseva, M. A. Syzgantseva, J.-N. Audinot, J. Bour, S. Zhang, T. Wirtz, Z. Fei, P. Dörflinger, N. Shibayama, Y. Niu, S. Hu, S. Zhang, F. F. Tirani, Y. Liu, G.-J. Yang, K. Brooks, L. Hu, S. Kinge, V. Dyakonov, X. Zhang, S. Dai, P. J. Dyson, M. K. Nazeeruddin, Nature 2024, 628, 299.
- 22Z. Wu, E. Bi, L. K. Ono, D. Li, O. M. Bakr, Y. Yan, Y. Qi, Nano Energy 2023, 115, 108731.
- 23Y. Tu, G. Li, J. Ye, C. Deng, R. Liu, G. Yang, T. Shao, Y. Li, Y. Zang, Y. Wang, Q. Zhou, J. Wu, W. Yan, Small 2024, 20, 2309033.
- 24H. Zhang, L. Pfeifer, S. M. Zakeeruddin, J. Chu, M. Grätzel, Nat. Rev. Chem. 2023, 7, 632.
- 25Y. Zhong, Z. Liu, X. Luo, G. Liu, X. Wang, J. He, W. Sheng, D. Yu, C. Liang, L. Tan, Y. Chen, Energy Environ. Sci. 2024, 17, 5500.
- 26Y. Li, J. Shi, J. Zheng, J. Bing, J. Yuan, Y. Cho, S. Tang, M. Zhang, Y. Yao, C. F. J. Lau, D. S. Lee, C. Liao, M. A. Green, S. Huang, W. Ma, A. W. Y. Ho-Baillie, Adv. Sci. 2020, 7, 1903368.
- 27S. Y. Abate, Z. Yang, S. Jha, G. Ma, Z. Ouyang, H. Zhang, S. Muhammad, N. Pradhan, X. Gu, D. Patton, K. Wang, D. Li, J. Cai, Q. Dai, Chem. Eng. J. 2023, 457, 141199.
- 28Q. Xiao, Y. Zhao, Z. Huang, Y. Liu, P. Chen, S. Wang, S. Zhang, Y. Zhang, Y. Song, Adv. Funct. Mater. 2024, 34, 2314472.
- 29W. Deng, F. Li, J. Li, M. Wang, Y. Hu, M. Liu, Nano Energy 2020, 70, 104505.
- 30S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J. T.-W. Wang, S. Huettner, S. Buecheler, M. Fahlman, F. Gao, H. J. Snaith, Nature 2019, 571, 245.
- 31J. Roe, J. G. Son, S. Park, J. Seo, T. Song, J. Kim, S. O. Oh, Y. Jo, Y. Lee, Y. S. Shin, H. Jang, D. Lee, D. Yuk, J. G. Seol, Y. S. Kim, S. Cho, D. S. Kim, J. Y. Kim, ACS Nano 2024, 18, 24306.
- 32T. Zhang, Z. Miao, R. Zhao, F. Yuan, S. Peng, Y. Liang, H. Zhu, Y. Xie, W. Liang, P. Li, Y. Zhang, Y. Song, ACS Energy Lett. 2024, 9, 2248.
- 33G. Liu, Y. Zhong, H. Mao, J. Yang, R. Dai, X. Hu, Z. Xing, W. Sheng, L. Tan, Y. Chen, Chem. Eng. J. 2022, 431, 134235.
- 34Y. Bai, S. Xiao, C. Hu, T. Zhang, X. Meng, Q. Li, Y. Yang, K. S. Wong, H. Chen, S. Yang, Nano Energy 2017, 34, 58.
- 35Q. Jiang, J. Tong, Y. Xian, R. A. Kerner, S. P. Dunfield, C. Xiao, R. A. Scheidt, D. Kuciauskas, X. Wang, M. P. Hautzinger, R. Tirawat, M. C. Beard, D. P. Fenning, J. J. Berry, B. W. Larson, Y. Yan, K. Zhu, Nature 2022, 611, 278.
- 36H. Meng, K. Mao, F. Cai, K. Zhang, S. Yuan, T. Li, F. Cao, Z. Su, Z. Zhu, X. Feng, W. Peng, J. Xu, Y. Gao, W. Chen, C. Xiao, X. Wu, M. D. McGehee, J. Xu, Nat. Energy 2024, 9, 536.
- 37J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue, X. Li, C.-C. Chueh, H.-L. Yip, Z. Zhu, A. K. Y. Jen, Nat. Commun. 2020, 11, 177.
- 38F. X. Xie, H. Su, J. Mao, K. S. Wong, W. C. H. Choy, J. Phys. Chem. C 2016, 120, 21248.
- 39C. Liu, Y.-B. Cheng, Z. Ge, Chem. Soc. Rev. 2020, 49, 1653.
- 40M. A. R. Laskar, W. Luo, N. Ghimire, A. H. Chowdhury, B. Bahrami, A. Gurung, K. M. Reza, R. Pathak, R. S. Bobba, B. S. Lamsal, K. Chen, M. T. Rahman, S. I. Rahman, K. Emshadi, T. Xu, M. Liang, W. H. Zhang, Adv. Funct. Mater. 2020, 30, 2000778.
- 41J. Yu, G. Xie, S. Zheng, J. Chen, C. Feng, H. Li, R. Zhou, Z. Wang, L. Liu, J. Zhao, A. Liang, Y. Chen, ACS Nano 2024, 18, 22533.
- 42W. Zhao, J. Xu, K. He, Y. Cai, Y. Han, S. Yang, S. Zhan, D. Wang, Z. Liu, S. Liu, Nano-Micro Lett. 2021, 13, 169.
- 43C. Gao, S. Jia, X. Yin, Z. Li, G. Yang, J. Chen, Z. Li, X. An, Chem. Commun. 2025, 61, 2758.
- 44X. Li, X. Wu, B. Li, Z. Cen, Y. Shang, W. Lian, R. Cao, L. Jia, Z. Li, D. Gao, X. Jiang, T. Chen, Y. Lu, Z. Zhu, S. Yang, Energy Environ. Sci. 2022, 15, 4813.
- 45T. Zhou, Z. Xu, R. Wang, X. Dong, Q. Fu, Y. Liu, Adv. Mater. 2022, 34, 2200705.
- 46X. Wu, N. Liu, G. Wu, G. Cui, R. Shi, G. Xia, J. Bi, H. Huang, C. Zhao, Z. Zuo, M. Gu, J. Mater. Chem. A 2024, 12, 10554.