Alkylammonium Salt as Additives to Expand the Processing Window of Wide-Bandgap Perovskite Solar Cells Made in Ambient Air
Jing Lv
Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin, 541004 P. R. China
Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
Search for more papers by this authorJilin Wang
Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin, 541004 P. R. China
Search for more papers by this authorYuanhang Cheng
School of New Energy, Nanjing University of Science and Technology, Jiangyin, Jiangsu, 214443 P. R. China
Search for more papers by this authorJiaonan Sun
Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077 P. R. China
Search for more papers by this authorMenglan Lv
School of Chemistry and Chemical Engineering, Guizhou University, Guizhou, 550025 P. R. China
Search for more papers by this authorCorresponding Author
Ke Jin
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fei Long
Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin, 541004 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAurora Rizzo
Istituto di Nanotecnologia, c/o Campus Ecotekne, Via Monteroni, Lecce, 73100 Italy
Search for more papers by this authorFeng Hao
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorKeyou Yan
School of Environment and Energy, South China University of Technology, Guangzhou, 510000 P. R. China
Search for more papers by this authorJingjing Chang
School of Microelectronics, Xidian University, Xi'an, 710071 P. R. China
Search for more papers by this authorChenyi Yi
State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorJunqiao Ding
School of Chemical Science and Technology, Yunnan University, Kunming, 650091 P. R. China
Search for more papers by this authorYong Ding
School of Renewable Energy, Hohai University, Nanjing, 210024 P. R. China
Search for more papers by this authorCorresponding Author
Chuantian Zuo
Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLiming Ding
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorJing Lv
Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin, 541004 P. R. China
Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
Search for more papers by this authorJilin Wang
Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin, 541004 P. R. China
Search for more papers by this authorYuanhang Cheng
School of New Energy, Nanjing University of Science and Technology, Jiangyin, Jiangsu, 214443 P. R. China
Search for more papers by this authorJiaonan Sun
Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077 P. R. China
Search for more papers by this authorMenglan Lv
School of Chemistry and Chemical Engineering, Guizhou University, Guizhou, 550025 P. R. China
Search for more papers by this authorCorresponding Author
Ke Jin
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fei Long
Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin, 541004 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAurora Rizzo
Istituto di Nanotecnologia, c/o Campus Ecotekne, Via Monteroni, Lecce, 73100 Italy
Search for more papers by this authorFeng Hao
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorKeyou Yan
School of Environment and Energy, South China University of Technology, Guangzhou, 510000 P. R. China
Search for more papers by this authorJingjing Chang
School of Microelectronics, Xidian University, Xi'an, 710071 P. R. China
Search for more papers by this authorChenyi Yi
State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorJunqiao Ding
School of Chemical Science and Technology, Yunnan University, Kunming, 650091 P. R. China
Search for more papers by this authorYong Ding
School of Renewable Energy, Hohai University, Nanjing, 210024 P. R. China
Search for more papers by this authorCorresponding Author
Chuantian Zuo
Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLiming Ding
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 P. R. China
Search for more papers by this authorAbstract
Wide-bandgap (WBG) perovskites are critical for advancing tandem solar cell technology, yet their fabrication remains constrained by narrow processing windows and environmental instability. A synergistic alkylammonium salt additive strategy coupled with a mild gas-flow-assisted crystallization method is presented to produce ambient-air-processed WBG perovskite solar cells (PSCs) with improved reproducibility and scalability. Co-utilizing long-chain alkylammonium chlorides (xACls) and methylammonium chloride (MACl) reduced gas-flow speed requirements while expanding the crystallization kinetics window, suppressing non-radiative recombination and defects, which are verified by fluorescence lifetime imaging microscopy (FLIM), in situ UV–vis spectroscopy, and XRD. High-quality Cs0.2FA0.8PbI2.3Br0.7 films are successfully prepared under a low gas flow speed (≈2.7 m s−1), which is much lower than the traditional gas quenching method (>26 m s−1). Cs0.2FA0.8PbI2.3Br0.7 solar cells made by using 12ACl/MACl additives yielded a champion power conversion efficiency (PCE) of 19.72% (Voc: 1.238 V), which is among the highest efficiency for WBG PSCs made in ambient air. This method has the advantages of high humidity tolerance (PCE >19% for cells made under 20–65% RH), compatibility with cost-effective fan drying, elimination of anti-solvents, and >70% inert gas-flow intensity reduction, establishing an eco-friendly scalable protocol that bridges lab-to-industry translation for high-performance WBG PSCs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Supporting Information
Filename | Description |
---|---|
smll202503214-sup-0001-SuppMat.docx20.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 2J. Park, J. Kim, H.-S. Yun, M. J. Paik, E. Noh, H. J. Mun, M. G. Kim, T. J. Shin, S. I. Seok, Nature 2023, 616, 724.
- 3H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou, Y. Yang, Q. Zhou, A. S. R. Bati, H. Wan, Z. Wang, L. Zeng, J. Wang, P. Serles, Y. Liu, S. Teale, Y. Liu, M. I. Saidaminov, M. Li, N. Rolston, S. Hoogland, T. Filleter, M. G. Kanatzidis, B. Chen, Z. Ning, E. H. Sargent, Science 2024, 384, 189.
- 4A. J. Ramadan, R. D. J. Oliver, M. B. Johnston, H. J. Snaith, Nat. Rev. Mater. 2023, 8, 822.
- 5J. Tong, Q. Jiang, F. Zhang, S. B. Kang, D. H. Kim, K. Zhu, ACS Energy Lett. 2021, 6, 232.
- 6H. Zhang, N.-G. Park, DeCarbon 2024, 3, 100025.
10.1016/j.decarb.2023.100025 Google Scholar
- 7Z. Liu, R. Lin, M. Wei, M. Yin, P. Wu, M. Li, L. Li, Y. Wang, G. Chen, V. Carnevali, L. Agosta, V. Slama, N. Lempesis, Z. Wang, M. Wang, Y. Deng, H. Luo, H. Gao, U. Rothlisberger, S. M. Zakeeruddin, X. Luo, Y. Liu, M. Grätzel, H. Tan, Nat. Mater. 2025, 24, 252.
- 8Z. Liu, H. Li, Z. Chu, R. Xia, J. Wen, Y. Mo, H. Zhu, H. Luo, X. Zheng, Z. Huang, X. Luo, B. Wang, X. Zhang, G. Yang, Z. Feng, Y. Chen, W. Kong, J. Gao, H. Tan, Adv. Mater. 2024, 36, 2308370.
- 9X. Luo, H. Luo, H. Li, R. Xia, X. Zheng, Z. Huang, Z. Liu, H. Gao, X. Zhang, S. Li, Z. Feng, Y. Chen, H. Tan, Adv. Mater. 2023, 35, 2207883.
- 10J. Wen, Y. Zhao, P. Wu, Y. Liu, X. Zheng, R. Lin, S. Wan, K. Li, H. Luo, Y. Tian, L. Li, H. Tan, Nat. Commun. 2023, 14, 7118.
- 11K. Xiao, Y.-H. Lin, M. Zhang, R. D. J. Oliver, X. Wang, Z. Liu, X. Luo, J. Li, D. Lai, H. Luo, R. Lin, J. Xu, Y. Hou, H. J. Snaith, H. Tan, Science 2022, 376, 762.
- 12K. Xiao, J. Wen, Q. Han, R. Lin, Y. Gao, S. Gu, Y. Zang, Y. Nie, J. Zhu, J. Xu, H. Tan, ACS Energy Lett. 2020, 5, 2819.
- 13Z. Yi, W. Wang, R. He, J. Zhu, W. Jiao, Y. Luo, Y. Xu, Y. Wang, Z. Zeng, K. Wei, J. Zhang, S.-W. Tsang, C. Chen, W. Tang, D. Zhao, Energy Environ. Sci. 2024, 17, 202.
- 14R. He, W. Wang, Z. Yi, F. Lang, C. Chen, J. Luo, J. Zhu, J. Thiesbrummel, S. Shah, K. Wei, Y. Luo, C. Wang, H. Lai, H. Huang, J. Zhou, B. Zou, X. Yin, S. Ren, X. Hao, L. Wu, J. Zhang, J. Zhang, M. Stolterfoht, F. Fu, W. Tang, D. Zhao, Nature 2023, 618, 80.
- 15Y. Luo, J. Zhu, X. Yin, W. Jiao, Z. Gao, Y. Xu, C. Wang, Y. Wang, H. Lai, H. Huang, J. Luo, J. Wang, J. You, Z. Zhang, X. Hao, G. Zeng, S. Ren, Z. Li, F. Fu, M. Li, C. Xiao, C. Chen, D. Zhao, Adv. Energy Mater. 2024, 14, 2304429.
- 16R. He, Z. Yi, Y. Luo, J. Luo, Q. Wei, H. Lai, H. Huang, B. Zou, G. Cui, W. Wang, C. Xiao, S. Ren, C. Chen, C. Wang, G. Xing, F. Fu, D. Zhao, Adv. Sci. 2022, 9, 2203210.
- 17J. Zhu, D. Zhao, The Innovation 2023, 4, 100493.
- 18H. Cui, L. Huang, S. Zhou, C. Wang, X. Hu, H. Guan, S. Wang, W. Shao, D. Pu, K. Dong, J. Zhou, P. Jia, W. Wang, C. Tao, W. Ke, G. Fang, Energy Environ. Sci. 2023, 16, 5992.
- 19H.-H. Huang, Q.-H. Liu, H. Tsai, S. Shrestha, L.-Y. Su, P.-T. Chen, Y.-T. Chen, T.-A. Yang, H. Lu, C.-H. Chuang, K.-F. Lin, S.-P. Rwei, W. Nie, L. Wang, Joule 2021, 5, 958.
- 20X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Science 2016, 353, 58.
- 21B. Parida, A. Singh, A. K. Kalathil Soopy, S. Sangaraju, M. Sundaray, S. Mishra, S. Liu, A. Najar, Adv. Sci. 2022, 9, 2200308.
- 22Q. Zhou, X. Liu, Z. Liu, Y. Zhu, J. Lu, Z. Chen, C. Li, J. Wang, Q. Xue, F. He, J. Liang, H. Li, S. Wang, Q. Tai, Y. Zhang, J. Liu, C. Zuo, L. Ding, Z. Xiong, R. Zheng, H. Zhang, P. Zhao, X. Jin, P. Wu, F. Zhang, Y. Jiang, H. Zhou, J. Hu, Y. Wang, Y. Song, et al., Materials Futures 2024, 3, 022102.
- 23A. Babayigit, J. D'Haen, H.-G. Boyen, B. Conings, Joule 2018, 2, 1205.
- 24Q. Jiang, K. Zhu, Nat. Rev. Mater. 2024, 9, 399.
- 25C. Yang, W. Hu, J. Liu, C. Han, Q. Gao, A. Mei, Y. Zhou, F. Guo, H. Han, Light: Sci. Appl. 2024, 13, 227.
- 26Y.-H. Lin, F. Yang, X.-L. Cao, A. Dasgupta, R. D. J. Oliver, A. M. Ulatowski, M. M. McCarthy, X. Shen, Q. Yuan, M. G. Christoforo, F. S. Y. Yeung, M. B. Johnston, N. K. Noel, L. M. Herz, M. S. Islam, H. J. Snaith, Science 2024, 384, 767.
- 27C. Zuo, D. Vak, D. Angmo, L. Ding, M. Gao, Nano Energy 2018, 46, 185.
- 28C. Zuo, A. D. Scully, D. Vak, W. Tan, X. Jiao, C. R. McNeill, D. Angmo, L. Ding, M. Gao, Adv. Energy Mater. 2019, 9, 1803258.
- 29C. Zuo, L. Ding, Angew. Chem., Int. Ed. 2021, 60, 11242.
- 30H. Xiao, C. Zuo, L. Zhang, W. Zhang, F. Hao, C. Yi, F. Liu, H. Jin, L. Ding, Nano Energy 2023, 106, 108061.
- 31L. Liu, C. Zuo, G.-X. Liang, H. Dong, J. Chang, L. Ding, J. Semicond. 2024, 45, 010501.
- 32C. Zuo, L. Tan, H. Dong, J. Chen, F. Hao, C. Yi, L. Ding, DeCarbon 2023, 2, 100020.
10.1016/j.decarb.2023.100020 Google Scholar
- 33M. Kim, G.-H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee, D. Huh, H. Lee, S. K. Kwak, J. Y. Kim, D. S. Kim, Joule 2019, 3, 2179.
- 34Z.-D. Yu, Y. Lu, Z.-Y. Wang, H.-I. Un, S. J. Zelewski, Y. Cui, H.-Y. You, Y. Liu, K.-F. Xie, Z.-F. Yao, Y.-C. He, J.-Y. Wang, W.-B. Hu, H. Sirringhaus, J. Pei, Sci. Adv. 2023, 9, adf3495.
- 35B. Subedi, C. Li, C. Chen, D. Liu, M. M. Junda, Z. Song, Y. Yan, N. J. Podraza, ACS Appl. Mater. Interfaces 2022, 14, 7796.
- 36H. Xiao, C. Zuo, K. Yan, Z. Jin, Y. Cheng, H. Tian, Z. Xiao, F. Liu, Y. Ding, L. Ding, Adv. Energy Mater. 2023, 13, 2300738.