Reusable Te-Doped Sn-P-I Catalysts With Anti-Healing P Vacancies and Stable I Sites for Efficient Black Phosphorus Growth
Junping Zhao
Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan Technological Innovation Center of Phosphorus Resources, Kunming, 650600 China
Search for more papers by this authorPengwei Zhao
School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYan Zhang
Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan Technological Innovation Center of Phosphorus Resources, Kunming, 650600 China
Search for more papers by this authorWenyue Dong
Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan Technological Innovation Center of Phosphorus Resources, Kunming, 650600 China
Search for more papers by this authorXiaobin Fan
School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorDelong Xie
Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan Technological Innovation Center of Phosphorus Resources, Kunming, 650600 China
Search for more papers by this authorCorresponding Author
Yuanzhi Zhu
Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan Technological Innovation Center of Phosphorus Resources, Kunming, 650600 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yi Mei
Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan Technological Innovation Center of Phosphorus Resources, Kunming, 650600 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJunping Zhao
Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan Technological Innovation Center of Phosphorus Resources, Kunming, 650600 China
Search for more papers by this authorPengwei Zhao
School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYan Zhang
Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan Technological Innovation Center of Phosphorus Resources, Kunming, 650600 China
Search for more papers by this authorWenyue Dong
Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan Technological Innovation Center of Phosphorus Resources, Kunming, 650600 China
Search for more papers by this authorXiaobin Fan
School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorDelong Xie
Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan Technological Innovation Center of Phosphorus Resources, Kunming, 650600 China
Search for more papers by this authorCorresponding Author
Yuanzhi Zhu
Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan Technological Innovation Center of Phosphorus Resources, Kunming, 650600 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yi Mei
Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan Technological Innovation Center of Phosphorus Resources, Kunming, 650600 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Black phosphorus (BP) holds significant potential for various applications, but its widespread use requires the development of efficient and cost-effective preparation methods. Sn-P-I clathrates are identified as potential catalysts for BP growth; however, the intact Sn-P-I structure leads to prolonged preparation times, rapid deactivation, and an unclear catalytic mechanism. In this study, a Te-doping strategy is proposed to simultaneously improve the activity and stability of Sn-P-I catalysts. Te doping induces the formation of Sn─Te bonds, creates intrinsic anti-healing phosphorus vacancies, while also mitigates iodine loss due to the lower electronegativity of Te compared to P. This doping changes the deactivation mechanism of the Sn-I-P from phosphorus saturation to iodine loss in the Te-doped Sn-I-P. To further improve catalyst reusability, an iodination treatment is introduced to reactivate the Te-Sn-P-I catalysts. The optimized Te-Sn-P-I catalyst reduced the reaction time for BP synthesis from 15 h to just 45 min, achieving a BP yield of 96.7%. The reactivation process restores 100% of the catalytic performance.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202502856-sup-0001-SuppMat.docx35.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Chen, Y. Yin, R. Zhang, Q. Yuan, Y. Xu, Y. Zhang, J. Chen, Y. Zhang, C. Li, J. Wang, J. Li, L. Fei, Q. Yu, Z. Zhou, H. Zhang, R. Cheng, Z. Dong, X. Xu, A. Pan, K. Zhang, J. He, Nat. Mater. 2023, 22, 717.
- 2a) J. Sun, H.-W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, Y. Cui, Nat. Nanotechnol. 2015, 10, 980; b) X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang, Z. Li, Y. Ge, S. C. Dhanabalan, J. S. Ponraj, S. Wang, J. Zhong, H. Zhang, Adv. Energy Mater. 2017, 7, 1700396; c) Y. Zhang, H. Wang, Z. Luo, H. T. Tan, B. Li, S. Sun, Z. Li, Y. Zong, Z. J. Xu, Y. Yang, K. A. Khor, Q. Yan, Adv. Energy Mater. 2016, 6, 1600453.
- 3a) Q. Zhou, Q. Chen, Y. Tong, J. Wang, Angew. Chem., Int. Ed. 2016, 55, 11437; b) Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X.-F. Yu, P. K. Chu, Adv. Funct. Mater. 2015, 25, 6996.
- 4S. Zhao, E. Wang, E. A. Üzer, S. Guo, R. Qi, J. Tan, K. Watanabe, T. Taniguchi, T. Nilges, P. Gao, Y. Zhang, H.-M. Cheng, B. Liu, X. Zou, F. Wang, Nat. Commun. 2021, 12, 3947.
- 5W. Zhou, H. Cui, L. Ying, X.-F. Yu, Angew. Chem., Int. Ed. 2018, 57, 10268.
- 6a) Q. Zhao, K. Zhao, G.-F. Han, M. Huang, R. Wang, Z. Wang, W. Zhou, Y. Ma, J. Liu, Z. Wang, C. Xu, G. Huang, J. Wang, F. Pan, J.-B. Baek, Nat. Commun. 2024, 15, 8680; b) K. W. Liu, Y. B. Ma, Y. Guo, H. Wang, Y. N. Xu, X. D. Zhang, X. Zhang, X. Z. Sun, K. Wang, L. Yu, Y. W. Ma, Adv. Funct. Mater. 2024, 34, 2410451; c) R. K. Mishra, J. Sarkar, I. Chianella, S. Goel, H. Y. Nezhad, Next Materials 2024, 4, 100217.
- 7a) Z.-L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi, W. Lu, K. Kang, Q. Zhang, S. P. Lau, Nat. Commun. 2018, 9, 4164; b) W. Zhai, Y. Chen, Y. Liu, Y. Ma, P. Vijayakumar, Y. Qin, Y. Qu, Z. Dai, Nano-Micro Lett. 2024, 16, 115; c) L. Xiao, Q. Zheng, S. Luo, Y. Ying, R. Zhou, S. Zhou, X. Li, X. Ye, Z. Yu, Q. Xu, H. Liao, J. Xu, Sci. Adv. 2024, 10, 2707; d) H. Liu, G. Hai, L.-X. Ding, H. Wang, Angew. Chem., Int. Ed. 2023, 62, 135.
- 8a) Y. Zhao, J. Mao, Z. Wu, W. F. Io, S.-Y. Pang, Y. Zhao, J. Hao, Nat. Commun. 2024, 15, 6795; b) W. Li, Q. Tao, Z. Li, G. Yang, Z. Lu, Y. Chen, Y. Wen, Y. Wang, L. Liao, Y. Liu, J. He, Nat. Electron. 2024, 7, 131; c) Z. Dang, F. Guo, H. Duan, Q. Zhao, Y. Fu, W. Jie, K. Jin, J. Hao, Nano Lett. 2023, 23, 6752; d) L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2014, 9, 372; e) Y. Zhao, Z. Wu, Z. Dang, J. Hao, Appl. Phys. Rev. 2022, 9, 041318.
- 9a) Z. He, W. Chen, K. Hu, Y. Luo, W. Zeng, X. He, T. Li, J. Ouyang, Y. Li, L. Xie, Y. Zhang, Q. Xu, S. Yang, M. Guo, W. Zou, Y. Li, L. Huang, L. Chen, X. Zhang, Q. Saiding, R. Wang, M.-R. Zhang, N. Kong, T. Xie, X. Song, W. Tao, Nat. Nanotechnol. 2024, 19, 1386; b) X. Shao, Z. Ding, W. Zhou, Y. Li, Z. Li, H. Cui, X. Lin, G. Cao, B. Cheng, H. Sun, M. Li, K. Liu, D. Lu, S. Geng, W. Shi, G. Zhang, Q. Song, L. Chen, G. Wang, W. Su, L. Cai, L. Fang, D. T. Leong, Y. Li, X.-F. Yu, H. Li, Nat. Nanotechnol. 2021, 16, 1150.
- 10a) S. Yin, X. Ren, R. Zheng, Y. Li, J. Zhao, D. Xie, Y. Mei, Chem. Eng. J. 2023, 464, 142683; b) X. Yu, H. Li, X. Miao, N. Kang, Y. Sheng, Z. Xu, Z. Fu, M. Xu, R. Zong, S. Lu, Small 2024, 2407060.
- 11P. W. Bridgman, J. Am. Chem. Soc. 1914, 36, 1344.
- 12B. Tian, B. Tian, B. Smith, M. C. Scott, Q. Lei, R. Hua, Y. Tian, Y. Liu, Proc. Natl. Acad. Sci. 2018, 115, 4345.
- 13C. M. Park, H. J. Sohn, Adv. Mater. 2007, 19, 2465.
- 14a) S. Lange, P. Schmidt, T. Nilges, Inorg. Chem. 2007, 46, 4028; b) Z. Wu, Y. Lyu, Y. Zhang, R. Ding, B. Zheng, Z. Yang, S. P. Lau, X. H. Chen, J. Hao, Nat. Mater. 2021, 20, 1203; c) H. Wang, Y. Song, G. Huang, F. Ding, L. Ma, N. Tian, L. Qiu, X. Li, R. Zhu, S. Huang, H. Yan, X. H. Chen, L. Ding, C. Zheng, W. Ruan, Y. Zhang, Nat. Mater. 2024, 23, 470; d) E. Gaufres, Nat. Mater. 2021, 20, 1174.
- 15M. Fu, W. Yang, K. Du, J. Li, Y. Zhang, S. Deng, P. Yang, Cryst. Growth Des. 2022, 22, 7168.
- 16T. Nilges, M. Kersting, T. Pfeifer, J. Solid State Chem. 2008, 181, 1707.
- 17a) D. Wang, P. Yi, L. Wang, L. Zhang, H. Li, M. Lu, X. Xie, L. Huang, W. Huang, Front Chem 2019, 7, 21; b) M. Liu, S. Feng, Y. Hou, S. Zhao, L. Tang, J. Liu, F. Wang, B. Liu, Mater. Today 2020, 36, 91.
- 18a) S. Li, X. Liu, X. Fan, Y. Ni, J. Miracle, N. Theodoropoulou, J. Sun, S. Chen, B. Lv, Q. Yu, Cryst. Growth Des. 2017, 17, 6579; b) Y. Xu, X. Shi, Y. Zhang, H. Zhang, Q. Zhang, Z. Huang, X. Xu, J. Guo, H. Zhang, L. Sun, Z. Zeng, A. Pan, K. Zhang, Nat. Commun. 2020, 11, 1330.
- 19Q. Xu, Y. Zhu, C. Shi, N. Zhang, T. Xie, J. Mater. Sci.: Mater. Electron. 2020, 31, 19093.
- 20Z. Zhang, D.-H. Xing, J. Li, Q. Yan, Cryst. Eng. Comm. 2017, 19, 905.
- 21J. Zhao, P. Zhao, G. Du, S. Li, X. Fan, D. Xie, Y. Zhu, Y. Mei, Green Chem. 2025, 27, 2092.
- 22a) V. V. Novikov, A. V. Matovnikov, D. V. Avdashchenko, N. V. Mitroshenkov, E. Dikarev, S. Takamizawa, M. A. Kirsanova, A. V. Shevelkov, J. Alloys Compd. 2012, 520, 174; b) M. M. Shatruk, K. A. Kovnir, A. V. Shevelkov, I. A. Presniakov, B. A. Popovkin, Inorg. Chem. 1999, 38, 3455.
- 23T. Lu, Z. Zhang, B. Chen, S. Dong, C. Wang, A. Du, L. Wang, J. Ma, G. Cui, Mater. Today Energy 2020, 17, 100450.
- 24a) F.-Q. Ma, J.-W. Yao, Y.-F. Zhang, Y. Wei, RSC Adv. 2017, 7, 36288; b) D. Wu, H. Wang, C. Li, J. Xia, X. Song, W. Huang, Surf. Coat. Technol. 2014, 258, 672.
- 25a) Z. Yan, Z. Sun, A. Li, H. Liu, Z. Guo, L. Zhao, J. Feng, L. Qian, Chem. Eng. J. 2022, 429, 132249; b) Z. Ran, C. Shu, Z. Hou, P. Hei, T. Yang, R. Liang, J. Li, J. Long, Electrochim. Acta 2020, 337, 135795.
- 26A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, H. S. J. van der Zant, 2D Materials. 2014, 1, 025001.
- 27a) A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L'Heureux, N. Y. W. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, R. Martel, Nat. Mater. 2015, 14, 826; b) E. Bonera, A. Molle, Nanomaterials 2022, 12, 1410.
- 28N. Wang, H. Liu, X. Zhou, Q. Luo, X. Yang, H. Yang, H. Shu, H. Xu, Q. Zhang, D. Hildebrandt, X. Liu, S. Qiao, B. Liu, Q. Feng, Adv. Funct. Mater. 2022, 32, 2203967.
- 29a) G. Kresse, J. Hafner, Phys. Rev. B 1993, 48, 13115; b) G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
- 30a) G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758; b) J. P. Perdew, Y. Wang, Phys. Rev. B 1992, 45, 13244.
- 31J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 32a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456; c) G. Makov, M. C. Payne, Phys. Rev. B 1995, 51, 4014.