Achieving Ultra-Thin Solid Electrolyte Interphase for High-Performance Lithium Metal Anodes via Chloride-Assisted Electrochemical Corrosion
Xue Wang
School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorQiao Zhang
Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorZengwu Wei
School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorKaiwei Zhou
School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorXianhui Chen
School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorCorresponding Author
Zhao Qian
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jun Wang
Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xing Xin
School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211 China
Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXue Wang
School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorQiao Zhang
Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorZengwu Wei
School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorKaiwei Zhou
School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorXianhui Chen
School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorCorresponding Author
Zhao Qian
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jun Wang
Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xing Xin
School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211 China
Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The thickness and composition of the solid electrolyte interphase (SEI) on lithium (Li) metal are critical factors influencing dendrite growth. This study introduces a novel electrolyte selection strategy based on electrochemical corrosion principles. By employing LiCl and LiNO3 simultaneously, the electrolyte itself has a high donor number, low desolvation energy, high Li⁺ transference number and conductivity, and a moderate electrochemical stability window. In addition, it dynamically reduces the SEI thickness and reactivates dead Li, forming a ≈100 nm SEI enriched with LiF and Li2O on Li metal anode, which ensures the stable cycling of Li symmetric cells for 2000 h at a current density of 5 mA cm⁻2. Consequently, Li metal cells using LiFePO4 (LFP) as the cathode with the LiNO3-LiCl-added electrolyte exhibit excellent cycling performance for 1600 cycles at 680 mA g⁻1. Even with a thin Li metal anode, the Li (5 µm)|LFP cell retains 95% capacity after 70 cycles at 170 mA g⁻1. The universality and feasibility of this electrolyte design are also validated in diverse battery chemistries such as anode-free Cu|LFP, Li|LiNi0.8Mn0.1Co0.1O2 (NMC811), and Li|S cells, as well as in pouch cells with high-loading LFP and NMC811 cathodes, showcasing the promising electrolyte design strategy for Li metal batteries.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202502682-sup-0001-SuppMat.docx12.9 MB | Supporting Information |
smll202502682-sup-0002-MovieS1.mp412.5 MB | Supplemental Movie 1 |
smll202502682-sup-0003-MovieS2.mp416.5 MB | Supplemental Movie 2 |
smll202502682-sup-0004-MovieS3.mp47.8 MB | Supplemental Movie 3 |
smll202502682-sup-0005-MovieS4.mp46.9 MB | Supplemental Movie 4 |
smll202502682-sup-0006-MovieS5.mp45.2 MB | Supplemental Movie 5 |
smll202502682-sup-0007-MovieS6.mp49.5 MB | Supplemental Movie 6 |
smll202502682-sup-0008-MovieS7.mp48.4 MB | Supplemental Movie 7 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) X. Xie, L. Wei, J. Lu, A. Xu, B. Wang, X. Xiao, A. Wang, Z. Jin, Z. Shi, W. Wang, Energy Storage Mater. 2024, 67, 103323; b) Y. Jie, S. Wang, S. Weng, Y. Liu, M. Yang, C. Tang, X. Li, Z. Zhang, Y. Zhang, Y. Chen, F. Huang, Y. Xu, W. Li, Y. Guo, Z. He, X. Ren, Y. Lu, K. Yang, S. Cao, H. Lin, R. Cao, P. Yan, T. Cheng, X. Wang, S. Jiao, D. Xu, Nat. Energy 2024, 9, 987; c) Y. Xue, Y. Wang, H. Zhang, W. Kong, Y. Zhou, B. Kang, Z. Huang, H. Xiang, Angew. Chem., Int. Ed. 2025, 137, 202414201; d) H. G. Lee, S. Y. Kim, J. S. Lee, npj Comput. Mater. 2022, 8, 103.
- 2a) X.-Y. Yue, W.-W. Wang, Q.-C. Wang, J.-K. Meng, Z.-Q. Zhang, X.-J. Wu, X.-Q. Yang, Y.-N. Zhou, Energy Storage Mater. 2018, 14, 335; b) X. Cao, X. Ren, L. Zou, M. H. Engelhard, W. Huang, H. Wang, B. E. Matthews, H. Lee, C. Niu, B. W. Arey, Y. Cui, C. Wang, J. Xiao, J. Liu, W. Xu, J.-G. Zhang, Nat. Energy 2019, 4, 796; c) H. Liu, Y. Ji, Y. Li, S. Zheng, Z. Dong, K. Yang, A. Cao, Y. Huang, Y. Wang, H. Shen, S.j. Zhang, F. Pan, L. Yang, Interdiscip. Mater. 2024, 3, 297.
- 3a) Z. Liu, X. Dong, J. Wen, P. Hu, C. Shang, Small 2023, 19, 2300106; b) X. Gao, Y.-N. Zhou, D. Han, J. Zhou, D. Zhou, W. Tang, J. B. Goodenough, Joule 2020, 4, 1864; c) P. Hundekar, S. Basu, J. Pan, S. F. Bartolucci, S. Narayanan, Z. Yang, N. Koratkar, Energy Storage Mater. 2019, 20, 291; d) K. Huang, S. Bi, B. Kurt, C. Xu, L. Wu, Z. Li, G. Feng, X. Zhang, Angew. Chem., Int. Ed. 2021, 60, 19232.
- 4a) S. Jiao, J. Zheng, Q. Li, X. Li, M. H. Engelhard, R. Cao, J.-G. Zhang, W. X., Joule 2018, 2, 110; b) S.-J. Yang, X. Shen, X.-B. Cheng, F.-N. Jiang, R. Zhang, H. Liu, L. Liu, H. Yuan, J. Energy Chem. 2022, 69, 70.
- 5a) J. Park, S. Ha, J. Y. Jung, J. H. Hyun, S. H. Yu, H. K. Lim, N. D. Kim, Y. S. Yun, Adv. Sci. 2022, 9, 2104145; b) X. Xu, Y. Liu, J. Y. Hwang, O. O. Kapitanova, Z. Song, Y. K. Sun, A. Matic, S. Xiong, Adv. Energy Mater. 2020, 10, 2002390.
- 6a) Y. Chen, Z. Wang, X. Li, X. Yao, C. Wang, Y. Li, W. Xue, D. Yu, S. Y. Kim, F. Yang, A. Kushima, G. Zhang, H. Huang, N. Wu, Y.-W. Mai, J. B. Goodenough, J. Li, Nature 2020, 578, 251; b) J. Zhang, H. Chen, M. Wen, K. Shen, Q. Chen, G. Hou, Y. Tang, Adv. Funct. Mater. 2022, 32, 2110110.
- 7a) A. J. Sanchez, E. Kazyak, Y. Chen, K.-H. Chen, E. R. Pattison, N. P. Dasgupta, ACS Energy Lett. 2020, 5, 994; b) A. Permatasari, Y. Mori, M. So, V. L. Nguyen, G. Inoue, J. Energy Storage 2024, 92, 112115; c) O. Crowther, A. C. West, J. Electrochem. Soc. 2008, 155, A806.
- 8a) M. L. Meyerson, J. K. Sheavly, A. Dolocan, M. P. Griffin, A. H. Pandit, R. Rodriguez, R. M. Stephens, D. A. Vanden Bout, A. Heller, C. B. Mullins, J. Mater. Chem. 2019, 7, 14882; b) F. Ren, Z. Li, Y. Zhu, P. Huguet, S. Deabate, D. Wang, Z. Peng, Nano Energy 2020, 73, 104746; c) H. Y. Peng, Y. S. Xu, X. Y. Wei, Y. N. Li, X. Liang, J. Wang, S. J. Tan, Y. G. Guo, F. F. Cao, Adv. Mater. 2024, 36, 2313034.
- 9a) Y. Chen, M. Li, Y. Liu, Y. Jie, W. Li, F. Huang, X. Li, Z. He, X. Ren, Y. Chen, X. Meng, T. Cheng, M. Gu, S. Jiao, R. Cao, Nat. Commun. 2023, 14, 2655; b) Y. Liao, M. Zhou, L. Yuan, K. Huang, D. Wang, Y. Han, J. Meng, Y. Zhang, Z. Li, Y. Huang, Adv. Energy Mater. 2023, 13, 2301477; c) Z. Yang, W. Liu, Q. Chen, X. Wang, W. Zhang, Q. Zhang, J. Zuo, Y. Yao, X. Gu, K. Si, K. Liu, J. Wang, Y. Gong, Adv. Mater. 2023, 35, 2210130; d) H. Wang, J. He, J. Liu, S. Qi, M. Wu, J. Wen, Y. Chen, Y. Feng, J. Ma, Adv. Funct. Mater. 2021, 31, 2002578.
- 10a) T. Tang, C. Sun, Y. Li, M. Tong, J. Lu, C. Lai, Angew. Chem., Int. Ed. 2025, 64, 202417471; b) X. B. Cheng, S. J. Yang, Z. Liu, J. X. Guo, F. N. Jiang, F. Jiang, X. Xiong, W. B. Tang, H. Yuan, J. Q. Huang, Y. Wu, Q. Zhang, Adv. Mater. 2024, 36, 2307370; c) Y. Zhang, F. Li, Y. Cao, M. Yang, X. Han, Y. Ji, K. Chen, L. Liang, J. Sun, G. Hou, Adv. Funct. Mater. 2024, 34, 2315527.
- 11a) B. Jagger, M. Pasta, Joule 2023, 7, 2228; b) H. Lv, L. Zhou, Q. Fang, J. Cheng, J. Mei, Y. Xia, B. Wang, Small 2024, 20, 2312204; c) Z. Zhang, Y. Li, R. Xu, W. Zhou, Y. Li, S. T. Oyakhire, Y. Wu, J. Xu, H. Wang, Z. Yu, D. T. Boyle, W. Huang, Y. Ye, H. Chen, J. Wan, Z. Bao, W. Chiu, Y. Cui, Science 2022, 375, 66.
- 12Y. H. Tan, Z. Liu, J. H. Zheng, Z. J. Ju, X. Y. He, W. Hao, Y. C. Wu, W. S. Xu, H. J. Zhang, G. Q. Li, L. S. Zhou, F. Zhou, X. Tao, H. B. Yao, Z. Liang, Adv. Mater. 2024, 36, 2404815.
- 13B. Han, Z. Zhang, Y. Zou, K. Xu, G. Xu, H. Wang, H. Meng, Y. Deng, J. Li, M. Gu, Adv. Mater. 2021, 33, 2100404.
- 14S. Jie, J. Kang, S. Baek, B. Lee, Ultrason. Sonochem. 2023, 100, 106620.
- 15H. Song, J. Lee, M. Sagong, J. Jeon, Y. Han, J. Kim, H.-G. Jung, J.-S. Yu, J. Lee, I.-D. Kim, Adv. Mater. 2024, 36, 2407381.
- 16a) C. Wang, X. Wu, W. Yuan, X. Zhang, S. Jiang, B. Zhao, Y. Chen, G. Zhang, Y. Zeng, Q. Liu, F. Gu, Y. Tang, Y. Xie, Adv. Funct. Mater. 2024, 34, 2408758; b) F. Liu, R. Xu, Y. Wu, D. T. Boyle, A. Yang, J. Xu, Y. Zhu, Y. Ye, Z. Yu, Z. Zhang, X. Xiao, W. Huang, H. Wang, H. Chen, Y. Cui, Nature 2021, 600, 659; c) Z. Wei, X. Wang, M. Zhou, S. Papovic, K. Zheng, K. Swierczek, J. Wu, X. Xin, Small 2024, 20, 2407395.
- 17Y. Li, Y. Qi, Energy Environ. Sci. 2019, 12, 1286.
- 18a) J. M. Cameron, C. Holc, A. J. Kibler, C. L. Peake, D. A. Walsh, G. N. Newton, L. R. Johnson, Chem. Soc. Rev. 2021, 50, 5863; b) C. Jin, T. Liu, O. Sheng, M. Li, T. Liu, Y. Yuan, J. Nai, Z. Ju, W. Zhang, Y. Liu, Y. Wang, Z. Lin, J. Lu, X. Tao, Nat. Energy 2021, 6, 378; c) Y. Zhang, J. Liu, Y. Li, D. Zhao, W. Huang, Y. Zheng, J. Zhou, C. Zhu, C. Deng, Y. Sun, T. Qian, C. Yan, Adv. Funct. Mater. 2023, 33, 2301332; d) L. Dong, S. Zhong, B. Yuan, Y. Li, J. Liu, Y. Ji, D. Chen, Y. Liu, C. Yang, J. Han, W. He, Angew. Chem., Int. Ed. 2023, 62, 202301073.
- 19J. Chen, Z. Cheng, Y. Liao, L. Yuan, Z. Li, Y. Huang, Adv. Energy Mater. 2022, 12, 2201800.
- 20Y. Xia, P. Zhou, X. Kong, J. Tian, W. Zhang, S. Yan, W.-h. Hou, H.-Y. Zhou, H. Dong, X. Chen, P. Wang, Z. Xu, L. Wan, B. Wang, K. Liu, Nat. Energy 2023, 8, 934.
- 21K. Shi, A. Dutta, Y. Hao, M. Zhu, L. He, Y. Pan, X. Xin, L. F. Huang, X. Yao, J. Wu, Adv. Funct. Mater. 2022, 32, 2203652.
- 22P. Zhou, X. Zhang, Y. Xiang, K. Liu, Nano Res. 2023, 16, 8055.
- 23G. M. Hobold, K.-H. Kim, B. M. Gallant, Energy Environ. Sci. 2023, 16, 2247.
- 24M. Srout, M. Carboni, J. A. Gonzalez, S. Trabesinger, Small 2023, 19, 2206252.
- 25W. Wahyudi, X. Guo, V. Ladelta, L. Tsetseris, M. I. Nugraha, Y. Lin, V. Tung, N. Hadjichristidis, Q. Li, K. Xu, J. Ming, T. D. Anthopoulos, Adv. Sci. 2022, 9, 2202405.
- 26T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
- 27D. Jin, Y. Roh, T. Jo, M. H. Ryou, H. Lee, Y. M. Lee, Adv. Energy Mater. 2021, 11, 2003769.
- 28a) P. Li, J. Han, K. Chen, L. Xiao, Q. Xu, J. Xu, Inorg. Chem. Front. 2024, 11, 3765; b) L. Xiao, Q. Zheng, S. Luo, Y. Ying, R. Zhou, S. Zhou, X. Li, X. Ye, Z. Yu, Q. Xu, H. Liao, J. Xu, Sci. Adv. 2024, 10, adn2707.
- 29H. Zeng, K. Yu, J. Li, M. Yuan, J. Wang, Q. Wang, A. Lai, Y. Jiang, X. Yan, G. Zhang, H. Xu, J. Wang, W. Huang, C. Wang, Y. Deng, S.-S. Chi, ACS Nano 2024, 18, 1969.