Imine-Linked Covalent Organic Frameworks Tuned by Quaternary-Ammonium-Alkyl for Highly Effective and Selective Adsorption of Perchlorate from Water
Jian Ao
Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorYunpeng Wang
School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005 Australia
Search for more papers by this authorCorresponding Author
Lingjun Bu
Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082 P. R. China
Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYangtao Wu
Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorJiaxin Xiao
Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorCorresponding Author
Shiqing Zhou
Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082 P. R. China
Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorShaobin Wang
School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005 Australia
Search for more papers by this authorJian Ao
Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorYunpeng Wang
School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005 Australia
Search for more papers by this authorCorresponding Author
Lingjun Bu
Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082 P. R. China
Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYangtao Wu
Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorJiaxin Xiao
Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorCorresponding Author
Shiqing Zhou
Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082 P. R. China
Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorShaobin Wang
School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005 Australia
Search for more papers by this authorAbstract
Perchlorate (ClO4−) contamination in surface water is an escalating issue for drinking water safety. Herein, an imine-linked covalent organic framework (COF) tuned by quaternary ammonium alkyls (R4N+) is developed for ClO4− adsorption. The hydrophobic and cationic COF adsorbent achieves a record-breaking adsorption capacity of ClO4− at 912.7 mg g−1, demonstrating remarkable selectivity for ClO4− over other environmentally relevant anions and exhibiting rapid adsorption kinetics. Furthermore, the adsorbent maintains excellent recycling performance (removal efficiency ≥ 80% after 10 cycles) using tetrachloroferrate for regeneration. In dynamic flow-through experiments with real water samples, the adsorbent effectively treats ≈3200-bed volumes of feed streams (≈500 µg L−1), with an enrichment factor of 15.2. The hydrophobicity of the COF adsorbent is identified as a premise for its interaction with ClO4−. Molecular dynamic simulations and density functional theory calculations reveal that R4N+ anchored in COF cores enriches ClO4− via electrostatic attraction and bonds with ClO4− via unconventional hydrogen bonds (C─H─O). These key insights pave the way for future design and optimization of adsorbents for removing oxo-anion from water, especially for ClO4−.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202501400-sup-0001-SuppMat.docx2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) D. Trache, T. M. Klapötke, L. Maiz, M. Abd-Elghany, L. T. DeLuca, Green Chem. 2017, 19, 4711; b) F. Cao, J. Jaunat, N. Sturchio, B. Cancès, X. Morvan, A. Devos, V. Barbin, P. Ollivier, Sci. Total Environ. 2019, 661, 737; c) C. M. Steinmaus, Curr. Environ. Health Rep. 2016, 3, 136.
- 2a) P. Niziński, A. Błażewicz, J. Kończyk, R. Michalski, Rev. Environ. Health 2021, 36, 199; b) G. Charnley, Food Chem. Toxicol. 2008, 46, 2307.
- 3a) WHO, Geneva: World Health Organization. 2022; b) J. Han, L. Zhang, B. Ye, S. Gao, X. Yao, X. Shi, China CDC Weekly 2023, 5, 297; c) K. H. Kucharzyk, R. L. Crawford, B. Cosens, T. F. Hess, J. Environ. Manage. 2009, 91, 303.
- 4a) K. Kosaka, M. Asami, Y. Matsuoka, M. Kamoshita, S. Kunikane, Water Res. 2007, 41, 3474;
b) D. Dou, M. He, J. Liu, S. Xiao, F. Gao, W. An, L. Qi, J. Hazard. Mater. 2024, 474, 134805;
c) M. Sijimol, V. Gopikrishna, D. Dineep, M. Mohan, Energy, Ecol. Environ. 2017, 2, 207;
10.1007/s40974-017-0055-x Google Scholard) M. Vega, R. Nerenberg, I. T. Vargas, Environ. Res. 2018, 164, 316.
- 5a) Y. Xie, L. Ren, X. Zhu, X. Gou, S. Chen, Process Saf. Environ. Prot. 2018, 116, 180; b) L. Ye, H. You, J. Yao, H. Su, Desalination 2012, 298, 1.
- 6a) A. Ontiveros-Valencia, Y. Tang, R. Krajmalnik-Brown, B. E. Rittmann, Water Res. 2014, 55, 215; b) R. W. Gullick, M. W. Lechevallier, T. S. Barhorst, J.- Am. Water Works Assoc. 2001, 93, 66; c) J. Hu, Y. Xian, Y. Wu, R. Chen, H. Dong, X. Hou, M. Liang, B. Wang, L. Wang, Food Chem. 2021, 360, 130146.
- 7a) R. Mahmudov, C. P. Huang, Sep. Purif. Technol. 2010, 70, 329; b) Q. Fang, B. Chen, Y. Lin, Y. Guan, Environ. Sci. Technol. 2014, 48, 279.
- 8A. Srinivasan, T. Viraraghavan, Int. J. Environ. Res. Public Health 2009, 6, 1418.
- 9a) L. N. Pincus, H. E. Rudel, P. V. Petrović, S. Gupta, P. Westerhoff, C. L. Muhich, J. B. Zimmerman, Environ. Sci. Technol. 2020, 54, 9769; b) J.-h. Xu, N.-y. Gao, Y. Deng, M.-h. Sui, Y.-l. Tang, Desalination 2011, 275, 87; c) R. Parette, F. S. Cannon, K. Weeks, Water Res. 2005, 39, 4683.
- 10H. Shen, M. Sun, M. Hu, J. Cheng, RSC Adv. 2018, 8, 29928.
- 11J. Ao, L. Bu, Y. Wu, J. Luo, S. Zhou, Engineering, https://doi.org/10.1016/i.eng.2024.12.029 (accessed: January 2025).
10.1016/i.eng.2024.12.029 Google Scholar
- 12a) X. Yu, J. Zhang, Y. Zheng, Sci. Total Environ. 2021, 761, 143236; b) Y. Xie, S. Li, F. Wang, G. Liu, Chem. Eng. J. 2010, 156, 56; c) Y. Yang, N. Gao, Y. Deng, S. Zhou, Appl. Clay Sci. 2012, 65, 80.
- 13I. R. Colinas, R. C. Silva, S. R. Oliver, Environ. Sci. Technol. 2016, 50, 1949.
- 14a) S. Kim, J. Kim, D. Lee, Angew. Chem., Int. Ed. 2021, 60, 10858; b) J. Wang, X. Gu, P. Zhang, X. Huang, X. Zheng, M. Chen, H. Feng, R. T. Kwok, J. W. Lam, B. Z. Tang, J. Am. Chem. Soc. 2017, 139, 16974; c) A. J. Neel, M. J. Hilton, M. S. Sigman, F. D. Toste, Nature 2017, 543, 637.
- 15a) N. Huang, P. Wang, D. Jiang, Nat. Rev. Mater. 2016, 1, 1; b) C. S. Diercks, O. M. Yaghi, Science 2017, 355, aal1585; c) S.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548; d) S.-Y. Jiang, Z.-B. Zhou, S.-X. Gan, Y. Lu, C. Liu, Q.-Y. Qi, J. Yao, X. Zhao, Nat. Commun. 2024, 15, 698; e) J.-R. Wang, K. Song, T.-X. Luan, K. Cheng, Q. Wang, Y. Wang, W. W. Yu, P.-Z. Li, Y. Zhao, Nat. Commun. 2024, 15, 1267.
- 16a) A. Nagai, Z. Guo, X. Feng, S. Jin, X. Chen, X. Ding, D. Jiang, Nat. Commun. 2011, 2, 536; b) Z. Zhang, Z. Zhang, C. Chen, R. Wang, M. Xie, S. Wan, R. Zhang, L. Cong, H. Lu, Y. Han, Nat. Commun. 2024, 15, 2556; c) Z.-B. Zhou, P.-J. Tian, J. Yao, Y. Lu, Q.-Y. Qi, X. Zhao, Nat. Commun. 2022, 13, 2180.
- 17Y. Yuan, Y. Yang, K. R. Meihaus, S. Zhang, X. Ge, W. Zhang, R. Faller, J. R. Long, G. Zhu, Nat. Chem. 2023, 15, 1599.
- 18Y. Xie, T. Pan, Q. Lei, C. Chen, X. Dong, Y. Yuan, W. A. Maksoud, L. Zhao, L. Cavallo, I. Pinnau, Nat. Commun. 2022, 13, 2878.
- 19a) Z. Lei, Q. Yang, Y. Xu, S. Guo, W. Sun, H. Liu, L.-P. Lv, Y. Zhang, Y. Wang, Nat. Commun. 2018, 9, 1; b) Y. Yang, L. Yu, T. Chu, H. Niu, J. Wang, Y. Cai, Nat. Commun. 2022, 13, 2615.
- 20H. D. B. Jenkins, K. Pratt, J. Chem. Soc., Faraday Trans. 2 1978, 74, 968.
- 21a) L. Cumbal, A. K. SenGupta, Environ. Sci. Technol. 2005, 39, 6508; b) A. Tor, J. Hazard. Mater. 2007, 141, 814.
- 22L. Cao, I.-C. Chen, Z. Li, X. Liu, M. Mubashir, R. A. Nuaimi, Z. Lai, Nat. Commun. 2022, 13, 7894.
- 23a) M. Li, P. Cen, J. Li, J. Song, Q. Wu, W. Han, L. Huang, J. Yan, S. Zhou, C.-H. Mo, ACS EST Eng. 2024, 4, 1972; b) J. Samanta, M. Tang, M. Zhang, R. P. Hughes, R. J. Staples, C. Ke, J. Am. Chem. Soc. 2023, 145, 21723.
- 24a) H. Stephan, K. Gloe, W. Kraus, H. Spies, B. Johannsen, K. Wichmann, G. Reck, D. Chand, P. K. Bharadwa, U. Müller, Fundamentals and Applications of Anion Separations, Springer Nature, Berlin, Germany 2004, 151;
10.1007/978-1-4419-8973-4_10 Google Scholarb) A. Likholyot, J. K. Hovey, T. M. Seward, Geochim. Cosmochim. Acta 2005, 69, 2949.