Preparation of Highly Efficient All-pH Bifunctional Water Electrolysis Catalysts Through a Surface Modification Strategy
Yangyang Wu
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorYang Cheng
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Li Lv
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorTao Zhang
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorMao Peng
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorWenxiang Tang
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorZongpeng Zou
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorShengwei Tang
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Yan Wang
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYangyang Wu
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorYang Cheng
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Li Lv
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorTao Zhang
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorMao Peng
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorWenxiang Tang
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorZongpeng Zou
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorShengwei Tang
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Yan Wang
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Electrolytic hydrogen production from water is a very promising technology, and catalysts capable of efficient operation over a wide pH range are essential for energy storage and conversion. Herein, a trace Ru catalytic core restructures nickel foam (NF) under polymeric protection, with temperature gradient control forming HER-active metal monomers at low temperatures and OER-suitable oxides at high temperatures. It is demonstrated that the surface modification strategy can help NF to maintain its own backbone structure during the carbonation process and that the resulting catalysts possess excellent properties. The synthesized catalysts-Ru@NF-KPDA-550 exhibit the lowest OER overpotentials of 183 mV in 0.5 M H2SO4 and 151 mV in 1.0 M KOH, and Ru@NF-KPDA-350 exhibits the lowest HER overpotentials of 11.8 mV in 0.5 M H2SO4 and 13.4 mV in 1.0 M KOH for Ru@NF-KPDA-350 at 10 mA cm−2. The DFT simulations show that the synergistic interaction between Ru and Ni components, which optimizes their d-band centers, enhances the HER and OER pathways, thereby lowering activation barriers and boosting catalytic performance. This work provides a viable strategy for the design of pH-universal electrocatalysts for the overall water splitting.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202501330-sup-0001-SuppMat.docx10.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, aad4998.
- 2S. Chu, A. Majumdar, Nature 2012, 488, 294.
- 3M. Batool, A. Hameed, M. A. Nadeem, Coord. Chem. Rev. 2023, 480, 215029.
- 4T. Xiong, J. Li, J. Chandra Roy, M. Koroma, Z. Zhu, H. Yang, L. Zhang, T. Ouyang, M.-S. Balogun, M. Al-Mamun, J. Energy Chem. 2023, 81, 71.
- 5Z. Zhu, L. Luo, Y. He, M. Mushtaq, J. Li, H. Yang, Z. Khanam, J. Qu, Z. Wang, M.-S. Balogun, Adv. Funct. Mater. 2024, 34, 2306061.
- 6M. Mushtaq, M. Koroma, S. Jiang, S. Mathi, M. Tu, Z. Khanam, Y.-W. Hu, J. Deng, M.-S. Balogun, J. Mater. Chem. A 2025, 13, 5933.
- 7Q. Qian, X. He, Z. Li, Y. Chen, Y. Feng, M. Cheng, H. Zhang, W. Wang, C. Xiao, G. Zhang, Y. Xie, Adv. Mater. 2023, 35, 2300935.
- 8T. Zhu, S. Liu, B. Huang, Q. Shao, M. Wang, F. Li, X. Tan, Y. Pi, S.-C. Weng, B. Huang, Z. Hu, J. Wu, Y. Qian, X. Huang, Energy Environ. Sci. 2021, 14, 3194.
- 9Y. Wu, R. Yao, K. Zhang, Q. Zhao, J. Li, G. Liu, Chem. Eng. J. 2024, 479, 147939.
- 10Z. Wan, Q. He, J. Chen, T. T. Isimjan, B. Wang, X. Yang, Chin. J. Catal. 2020, 41, 1745.
- 11H. Zhang, G. Shen, X. Liu, B. Ning, C. Shi, L. Pan, X. Zhang, Z.-F. Huang, J.-J. Zou, Chin. J. Catal. 2021, 42, 1732.
- 12L. Zhou, Y. Shao, F. Yin, J. Li, F. Kang, R. Lv, Nat. Commun. 2023, 14, 7644.
- 13C.-X. Zhao, J.-N. Liu, B.-Q. Li, D. Ren, X. Chen, J. Yu, Q. Zhang, Adv. Funct. Mater. 2020, 30, 2003619.
- 14H. Xu, H. Shang, C. Wang, Y. Du, Adv. Funct. Mater. 2020, 30, 2000793.
- 15Z. Shi, J. Li, Y. Wang, S. Liu, J. Zhu, J. Yang, X. Wang, J. Ni, Z. Jiang, L. Zhang, Y. Wang, C. Liu, W. Xing, J. Ge, Nat. Commun. 2023, 14, 843.
- 16Q. Wang, Y. Cheng, H. B. Tao, Y. Liu, X. Ma, D.-S. Li, H. B. Yang, B. Liu, Angew. Chem., Int. Ed. 2023, 62, 202216645.
- 17H. Liu, Z. Zhang, J. Fang, M. Li, M. G. Sendeku, X. Wang, H. Wu, Y. Li, J. Ge, Z. Zhuang, D. Zhou, Y. Kuang, X. Sun, Joule 2023, 7, 558.
- 18H. Sun, W. Jung, J. Mater. Chem. A 2021, 9, 15506.
- 19Z.-Y. Zhang, H. Tian, H. Jiao, X. Wang, L. Bian, Y. Liu, N. Khaorapapong, Y. Yamauchi, Z.-L. Wang, J. Mater. Chem. A 2024, 12, 1218.
- 20R. Ge, L. Li, J. Su, Y. Lin, Z. Tian, L. Chen, Adv. Energy Mater. 2019, 9, 1901313.
- 21R. Zhang, Y. Han, Q. Wu, M. Lu, G. Liu, Z. Guo, Y. Zhang, J. Zeng, X. Wu, D. Zhang, L. Wu, N. Song, P. Yuan, A. Du, K. Huang, J. Chen, X. Yao, Small 2024, 20, 2402397.
- 22J. Su, R. Ge, K. Jiang, Y. Dong, F. Hao, Z. Tian, G. Chen, L. Chen, Adv. Mater. 2018, 30, 1801351.
- 23M. Tariq, Y. Wu, C. Ma, M. Ali, W. Q. Zaman, Z. Abbas, K. S. Ayub, J. Zhou, G. Wang, L. Cao, J. Yang, Int. J. Hydrogen Energy 2020, 45, 17287.
- 24J. N. Hausmann, P. Menezes, G. Vijaykumar, K. Laun, T. Diemant, I. Zebger, T. Jacob, M. Driess, P. W. Menezes, Adv. Energy Mater. 2022, 12, 2202098.
- 25W. Chen, Y. Hu, P. Peng, J. Cui, J. Wang, W. Wei, Y. Zhang, K. K. Ostrikov, S.-Q. Zang, Sci. China Mater. 2022, 65, 2421.
- 26Y. Yang, H. Yao, Z. Yu, S. M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao, G. Sun, H. Li, S. Ma, P. Zapol, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 10417.
- 27L. Liu, Y. Chen, Q. Zhang, Z. Liu, K. Yue, Y. Cheng, D. Li, Z. Zhu, J. Li, Y. Wang, Appl. Catalysis B: Environm. Energy 2024, 354, 124140.
- 28S. Ge, X. Shen, J. Gao, K. Ma, H. Zhao, R. Fu, C. Feng, Y. Zhao, Q. Jiao, H. Li, Chem. Eng. J. 2024, 485, 150161.
- 29H. Du, T. Wang, S. He, B. Li, K. Wang, Q. Chen, Z. Du, W. Ai, W. Huang, Adv. Funct. Mater. 2024, 34, 2311854.
- 30C. Amiens, B. Chaudret, D. Ciuculescu-Pradines, V. Collière, K. Fajerwerg, P. Fau, M. Kahn, A. Maisonnat, K. Soulantica, K. Philippot, New J. Chem. 2013, 37, 3374.
- 31X. Xiao, X. Wang, X. Jiang, S. Song, D. Huang, L. Yu, Y. Zhang, S. Chen, M. Wang, Y. Shen, Z. Ren, Small Methods 2020, 4, 1900796.
- 32Z. M. Tahroudi, A. Razmjou, M. Bagherian, M. Asadnia, Colloids Surf. A 2018, 559, 68.
- 33R. Ge, Y. Wang, Z. Li, M. Xu, S.-M. Xu, H. Zhou, K. Ji, F. Chen, J. Zhou, H. Duan, Angew. Chem., Int. Ed. 2022, 61, 202200211.
- 34X. Wu, Z. Wang, D. Zhang, Y. Qin, M. Wang, Y. Han, T. Zhan, B. Yang, S. Li, J. Lai, L. Wang, Nat. Commun. 2021, 12, 4018.
- 35Q. Liang, Q. Li, L. Xie, H. Zeng, S. Zhou, Y. Huang, M. Yan, X. Zhang, T. Liu, J. Zeng, K. Liang, O. Terasaki, D. Zhao, L. Jiang, B. Kong, ACS Nano 2022, 16, 7993.
- 36G. Meng, H. Tian, L. Peng, Z. Ma, Y. Chen, C. Chen, Z. Chang, X. Cui, J. Shi, Nano Energy 2021, 80, 105531.
- 37D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater. 2017, 29, 1606459.
- 38D. A. Kuznetsov, M. A. Naeem, P. V. Kumar, P. M. Abdala, A. Fedorov, C. R. Müller, J. Am. Chem. Soc. 2020, 142, 7883.
- 39T. Zhang, M.-Y. Wu, D.-Y. Yan, J. Mao, H. Liu, W.-B. Hu, X.-W. Du, T. Ling, S.-Z. Qiao, Nano Energy 2018, 43, 103.
- 40C. Li, H. Jang, M. G. Kim, L. Hou, X. Liu, J. Cho, Appl. Catal., B 2022, 307, 121204.
- 41J. Qu, W. Liu, R. Liu, J. He, D. Liu, Z. Feng, Z. Feng, R. Li, C. Li, Chem Catalysis 2023, 3, 100759.
- 42D. Chen, D. He, J. Lu, L. Zhong, F. Liu, J. Liu, J. Yu, G. Wan, S. He, Y. Luo, Appl. Catal., B 2017, 218, 249.
- 43M. Wu, Y. Fan, Y. Huang, D. Wang, Y. Xie, A. Wu, C. Tian, Nano Res. 2024, 17, 6931.
- 44S. Kamikura, T. Uchida, K. Naka, T. Asaji, H. Uchiyama, Y. Yoshida, Diamond Relat. Mater. 2011, 20, 863.
- 45D. A. S. Costa, R. V. Mambrini, L. E. Fernandez-Outon, W. A. A. Macedo, F. C. C. Moura, Chem. Eng. J. 2013, 229, 35.
- 46J. Hu, T. Guo, X. Zhong, J. Li, Y. Mei, C. Zhang, Y. Feng, M. Sun, L. Meng, Z. Wang, B. Huang, L. Zhang, Z. Wang, Adv. Mater. 2024, 36, 2310918.
- 47J. Shan, C. Guo, Y. Zhu, S. Chen, L. Song, M. Jaroniec, Y. Zheng, S.-Z. Qiao, Chem 2019, 5, 445.
- 48T. Y. Yoo, J. M. Yoo, A. K. Sinha, M. S. Bootharaju, E. Jung, H. S. Lee, B.-H. Lee, J. Kim, W. H. Antink, Y. M. Kim, J. Lee, E. Lee, D. W. Lee, S.-P. Cho, S. J. Yoo, Y.-E. Sung, T. Hyeon, J. Am. Chem. Soc. 2020, 142, 14190.
- 49J.-Y. Kim, D. Hong, J.-C. Lee, H. G. Kim, S. Lee, S. Shin, B. Kim, H. Lee, M. Kim, J. Oh, G.-D. Lee, D.-H. Nam, Y.-C. Joo, Nat. Commun. 2021, 12, 3765.
- 50Y. Hu, M. Tu, T. Xiong, Y. He, M. Mushtaq, H. Yang, Z. Khanam, Y. Huang, J. Deng, M.-S. Balogun, J. Energy Chem. 2025, 103, 282.
- 51C. Rong, K. Dastafkan, Y. Wang, C. Zhao, Adv. Mater. 2023, 35, 2211884.
- 52H. Li, C. Liu, Z. Mou, P. Yu, S. Wu, W. Wang, Z. Wang, R. Yuan, J. Colloid Interface Sci. 2025, 678, 227.
- 53N. Shaikh, I. Mukhopadhyay, A. Ray, J. Mater. Chem. A. 2022, 10, 12733.