Simultaneously Enhance Humidity Tolerance and Ionic Conductivity of Halide Electrolytes by Cation–Anion Co-Doping
Weizong Wang
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorKexuan Jing
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorHe Ma
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorKang Liang
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorPeng Wei
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorJiangchuan Liu
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorCorresponding Author
Yurong Ren
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qian Zhao
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhengping Ding
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorWeizong Wang
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorKexuan Jing
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorHe Ma
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorKang Liang
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorPeng Wei
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorJiangchuan Liu
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorCorresponding Author
Yurong Ren
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qian Zhao
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhengping Ding
School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Halide solid-state electrolytes (SSEs) with high ionic conductivity and oxidation stability show significant potentials for the commercialization of all-solid-state batteries (ASSBs). However, their practical applications are limited by poor humidity tolerance and decreased ionic conductivity. Herein, the Li3/3-xIn1-xMxCl5.6F0.4 (M = Hf, Zr, Fe, and Y; x = 0.015, 0.02, 0.025, 0.075, 0.1, 0.125, and 0.15) are synthesized by co-doping Li3InCl6 with M and F ions for high-performance ASSBs. Li2.98In0.98Hf0.02Cl5.6F0.4 achieves the highest ionic conductivity of 1.04 mS cm−1 at room temperature and good humidity tolerance of 87.96% conductivity retention after 24 h exposure. The analysis of experiments combining BVSE and AIMD simulations indicates that it benefits from the enhanced rigid structure that is thermodynamically stable to water caused by Cl− doping with F− and higher Li+ vacancies concentration that facilitates Li+ conduction generated by In3+ doping with Hf4+. Moreover, an all-solid-state battery ensembled with Li2.98In0.98Hf0.02Cl5.6F0.4, LiCoO2 and Li–In alloy, exhibits a high discharge capacity of 83.6 mAh g−1 and 78.6% capacity retention after 100 cycles under 0.5 C at 25 °C. This work provides a reliable strategy for designing advanced halide SSEs for commercial applications in ASSBs by cation–anion co-doping.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202500943-sup-0001-SuppMat.docx6.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Li, J. Liang, J. Luo, M. Norouzi Banis, C. Wang, W. Li, S. Deng, C. Yu, F. Zhao, Y. Hu, T.-K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, K. R. Adair, X. Sun, Energy Environ. Sci. 2019, 12, 2665.
- 2S. Y. Kim, K. Kaup, K.-H. Park, A. Assoud, L. Zhou, J. Liu, X. Wu, L. F. Nazar, ACS Mater. Lett. 2021, 3, 930.
- 3H. Ito, K. Shitara, Y. Wang, K. Fujii, M. Yashima, Y. Goto, C. Moriyoshi, N. C. Rosero-Navarro, A. Miura, K. Tadanaga, Adv. Sci. 2021, 8, 2101413.
- 4K. Wang, Z. Gu, Z. Xi, L. Hu, C. Ma, Nat. Commun. 2023, 14, 1396.
- 5F. Li, Y. Wu, X. Cheng, Y. Tan, J. Luo, R. Pan, T. Ma, L. Lu, X. Wen, Z. Liang, H. Yao, Energy Environ. Sci. 2024, 17, 4187.
- 6K. Tuo, F. Yin, F. Mi, C. Sun, J. Energy Chem. 2023, 87, 12.
- 7J. Liang, X. Li, S. Wang, K. R. Adair, W. Li, Y. Zhao, C. Wang, Y. Hu, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, Y. Mo, X. Sun, J. Am. Chem. Soc. 2020, 142, 7012.
- 8K. Wang, Q. Ren, Z. Gu, C. Duan, J. Wang, F. Zhu, Y. Fu, J. Hao, J. Zhu, L. He, C.-W. Wang, Y. Lu, J. Ma, C. Ma, Nat. Commun. 2021, 12, 4410.
- 9S. Wang, X. Xu, C. Cui, C. Zeng, J. Liang, J. Fu, R. Zhang, T. Zhai, H. Li, Adv. Funct. Mater. 2022, 32, 2108805.
- 10S. Wang, T. Zeng, X. Wen, H. Xu, F. Fan, X. Wang, G. Tian, S. Liu, P. Liu, C. Wang, C. Zeng, C. Shu, Small 2024, 20, 2309874.
- 11Q. Wang, Q. Liu, J. Phys. Chem. C 2024, 128, 21649.
- 12X. Chen, Z. Jia, H. Lv, C. Wang, N. Zhao, X. Guo, J. Power Sources 2022, 545, 231939.
- 13Q. Wang, X. Ma, Q. Liu, D. Sun, X. Zhou, J. Alloys and Compd. 2023, 969, 172479.
- 14S. Zhang, F. Zhao, S. Wang, J. Liang, J. Wang, C. Wang, H. Zhang, K. Adair, W. Li, M. Li, H. Duan, Y. Zhao, R. Yu, R. Li, H. Huang, L. Zhang, S. Zhao, S. Lu, T. K. Sham, Y. Mo, X. Sun, Adv. Energy Mater. 2021, 11, 2100836.
- 15Y. Kim, S. Choi, J. Power Sources 2023, 567, 232962.
- 16Z. Lu, L. Chen, X. Hu, S. Chen, X. Zhang, Z. Zhou, Chin. Phys. Lett. 2024, 41, 058201.
- 17H. Liu, Y. Li, C. Dong, H. Yuan, D. Yu, P. Ding, Y. Li, R. Cao, Q. Wu, Y. Liang, H. Luo, Z. Qin, L. Gao, Y. Ren, Energy Storage Mater. 2025, 75, 104107.
- 18M. Liu, J. Hong, E. Sebti, K. Zhou, S. Wang, S. Feng, T. Pennebaker, Z. Hui, Q. Miao, E. Lu, N. Harpak, S. Yu, J. Zhou, J. Oh, M. Song, J. Luo, R. Clement, P. Liu, Nat. Commun. 2025, 16, 213.
- 19H. Wang, Y. Li, Y. Tang, D. Ye, T. He, H. Zhao, J. Zhang, ACS App. Mater. Interfaces 2023, 15, 5504.
- 20J. Park, D. Han, H. Kwak, Y. Han, Y. J. Choi, K.-W. Nam, Y. S. Jung, Chem. Eng. J. 2021, 425, 130630.
- 21H. Kwak, D. Han, J. Son, J. Kim, J. Park, K. Nam, H. Kim, Y. Jung, Chem. Eng. J. 2022, 437, 135413.
- 22S. Wang, X. Wen, Z. Huang, H. Xu, F. Fan, X. Wang, G. Tian, S. Liu, P. Liu, C. Wang, C. Zeng, C. Shu, Z. Liang, Adv. Funct. Mater. 2024, 35, 2416389.
- 23M. R. Busche, D. A. Weber, Y. Schneider, C. Dietrich, S. Wenzel, T. Leichtweiss, D. Schröder, W. Zhang, H. Weigand, D. Walter, S. J. Sedlmaier, D. Houtarde, L. F. Nazar, J. Janek, Chem. Mater. 2016, 28, 6152.
- 24R. Schlem, S. Muy, N. Prinz, A. Banik, Y. Shao-Horn, M. Zobel, W. G. Zeier, Adv. Energy Mater. 2019, 10, 1903719.
- 25Y. Liu, C. Zhang, Z. Liu, D. G. Truhlar, Y. Wang, X. He, Nat. Comput. Sci. 2022, 3, 48.
- 26I. B. Obot, D. D. Macdonald, Z. M. Gasem, Corros. Sci. 2015, 99, 1.
- 27T. Wang, G. Ceder, Chem. Mater. 2007, 19, 543.
- 28G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- 29H. J. Steiner, H. D. Lutz, Zeitschrift für anorganische und allgemeine Chemie 2004, 613, 26.
10.1002/zaac.19926130104 Google Scholar
- 30L. Pan, L. Zhang, A. Ye, S. Chi, Z. Zou, B. He, L. Chen, Q. Zhao, D. Wang, S. Shi, J. Materiomics 2019, 5, 688.
- 31B. He, S. Chi, A. Ye, P. Mi, L. Zhang, B. Pu, Z. Zou, Y. Ran, Q. Zhao, D. Wang, W. Zhang, J. Zhao, S. Adams, M. Avdeev, S. Shi, Sci. Data 2020, 7, 151.
- 32B. He, P. Mi, A. Ye, S. Chi, Y. Jiao, L. Zhang, B. Pu, Z. Zou, W. Zhang, M. Avdeev, S. Adams, J. Zhao, S. Shi, Acta Mater. 2021, 203, 116490.
- 33L. Zhang, B. He, Q. Zhao, Z. Zou, S. Chi, P. Mi, A. Ye, Y. Li, D. Wang, M. Avdeev, S. Adams, S. Shi, Adv. Funct. Mater. 2020, 30, 2003087.
- 34G. Kresse, D. Joubert, Phy. Rev. B. 1999, 59, 1758.
- 35J. Kang, B. Han, J. Phy. Chem. Lett. 2016, 7, 2671.
- 36X. Li, J. Liang, K. R. Adair, J. Li, W. Li, F. Zhao, Y. Hu, T.-K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, N. Chen, X. Sun, Nano Lett. 2020, 20, 4384.
- 37B. Singh, M. K. Gupta, R. Mittal, S. L. Chaplot, J. Mater. Chem. A 2018, 6, 5052.
- 38Y. A. Zulueta, M. T. Nguyen, Dalton Trans. 2021, 50, 3020.
- 39G. Wang, B. Xu, J. Shi, X. Lei, C. Ouyang, Appl. Surf. Sci. 2018, 436, 505.
- 40J. F. È. G. Kresse, Phys. Rev. B 1996, 54, 11169.
- 41K. Burke, J. Perdew, D. Langreth, Phy. Rev. Lett. 1994, 73, 1283.
- 42A. Naveed, H. Yang, Y. Shao, J. Yang, N. Yanna, J. Liu, S. Shi, L. Zhang, A. Ye, B. He, J. Wang, Adv. Mater. 2019, 31, 1900668.
- 43H. Chen, S. J. I. Adams, IUCrJ 2017, 4, 614.
- 44H. Chen, L. Wong, S. Adams, Acta Cryst. 2019, 75, 18.
- 45B. H. Toby, R. B. Von Dreele, J. Appl. Crystallogr. 2013, 46, 544.
- 46R. B. Von Dreele, Applied Crystallography 2014, 47, 1784.
- 47T. Poudel, M. Deck, P. Wang, Y. Hu, Adv. Funct. Mater. 2023, 34, 2309656.