A Pre-Oxidation Strategy to Establish Stable Oxide Cathode/Halide Solid-State Electrolyte Interfaces for High Energy all Solid-State Batteries
Hanzhou Liu
School of Metallurgy and Environment, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorCorresponding Author
Yang Lu
School of Metallurgy and Environment, Central South University, Changsha, 410083 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYanchen Liu
School of Metallurgy and Environment, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorShenghao Jing
School of Metallurgy and Environment, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorZongliang Zhang
National Energy Metal Resources and New Materials Key Laboratory, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorSiliang Liu
Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Changsha, 410083 P. R. China
Search for more papers by this authorYang Liu
Hunan Energy Frontiers New Materials Technology Co., Ltd., Changsha, 410083 P. R. China
Search for more papers by this authorYongle Chen
Hunan Energy Frontiers New Materials Technology Co., Ltd., Changsha, 410083 P. R. China
Search for more papers by this authorShuo Yin
CNGR Advanced Material Co., Ltd, Tongren, 554300 P. R. China
Search for more papers by this authorFanqun Li
Wanxiang One two Three Co., Ltd., Hangzhou, 311200 P. R. China
Search for more papers by this authorCorresponding Author
Fangyang Liu
School of Metallurgy and Environment, Central South University, Changsha, 410083 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHanzhou Liu
School of Metallurgy and Environment, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorCorresponding Author
Yang Lu
School of Metallurgy and Environment, Central South University, Changsha, 410083 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYanchen Liu
School of Metallurgy and Environment, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorShenghao Jing
School of Metallurgy and Environment, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorZongliang Zhang
National Energy Metal Resources and New Materials Key Laboratory, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorSiliang Liu
Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Changsha, 410083 P. R. China
Search for more papers by this authorYang Liu
Hunan Energy Frontiers New Materials Technology Co., Ltd., Changsha, 410083 P. R. China
Search for more papers by this authorYongle Chen
Hunan Energy Frontiers New Materials Technology Co., Ltd., Changsha, 410083 P. R. China
Search for more papers by this authorShuo Yin
CNGR Advanced Material Co., Ltd, Tongren, 554300 P. R. China
Search for more papers by this authorFanqun Li
Wanxiang One two Three Co., Ltd., Hangzhou, 311200 P. R. China
Search for more papers by this authorCorresponding Author
Fangyang Liu
School of Metallurgy and Environment, Central South University, Changsha, 410083 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
All-solid-state lithium metal batteries (ASSLBs) are promising for high energy and safety. Halide-based solid-state electrolytes, characterized by high ionic conductivity and a notably wide electrochemical window exceeding 4.3 V, hold significant promise for compatibility with high-energy cathodes. However, oxygen in cathodes exhibits a strong tendency to interact with the central metal cation in halide solid-state electrolyte, forming an unstable cathode-electrolyte interface (CEI) and leading to cathodic degradations. Herein, a pre-oxidation strategy is proposed for Y based halide solid-state electrolytes, leveraging oxygen to pre-establish robust Y─O bonds within the halide electrolyte structure Li2YCl2.5Br1.5O0.5 (2LO-0.5). The robust Y─O bonds in 2LO-0.5 effectively hinder uncontrolled oxygen interactions with Y3⁺, which would otherwise lead to the formation of oxidizable YOCl. This stabilization promotes the formation of a thin, stable Y₂O₃-based CEI against LiNi0.83Co0.11Mn0.06O2 (NCM83). Therefore, the ASSLB assembled with 2LO-0.5 and NCM83 demonstrates an initial discharge-specific capacity of 208 mAh g−1 and retained 80.6% of its capacity after 1000 cycles, attributed to stable CEI film derived from pre-oxidized strategy. This work offers new insights for regulating the non-redox reaction between halide solid-state electrolytes and oxide cathodes, promoting the rational design of high-performance halide solid-state electrolytes.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202412647-sup-0001-SuppMat.docx4.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561; b) T. Krauskopf, F. H. Richter, W. G. Zeier, J. Janek, Chem. Rev. 2020, 120, 7745; c) F. Duffner, N. Kronemeyer, J. Tübke, J. Leker, M. Winter, R. Schmuch, Nat. Energy 2021, 6, 123.
- 2a) J. Janek, W. G. Zeier, Nat. Energy 2016, 1, 16141;
b) C. Wang, J. T. Kim, C. Wang, X. Sun, Adv. Mater. 2023, 35, 2209074;
c) Q. Zhao, S. Stalin, C. Z. Zhao, L. A. Archer, Nat. Rev. Mater. 2020, 5, 229;
d) M. Balaish, J. C. Gonzalez-Rosillo, K. J. Kim, Y. Zhu, Z. D. Hood, J. L. M. Rupp, Nat. Energy 2021, 6, 227;
e) H. Kwak, S. Wang, J. Park, Y. Liu, K. T. Kim, Y. Choi, Y. Mo, Y. S. Jung, ACS Energy Lett. 2022, 7, 1776;
f) Y. Nikodimos, W. N. Su, B. J. Hwang, Adv. Energy Mater. 2022, 13, 2202854;
g) S. Jing, H. Shen, Y. Huang, W. Kuang, Z. Zhang, S. Liu, S. Yin, Y. Lai, F. Liu, Adv. Funct. Mater. 2023, 33, 2214274;
h) A. Zhang, J. Wang, R. Yu, H. Zhuo, C. Wang, Z. Ren, J. Wang, ACS Appl. Mater. Interfaces 2023, 15, 8190;
i) Y. Tanaka, K. Ueno, K. Mizuno, K. Takeuchi, T. Asano, A. Sakai, Angew. Chem., Int. Ed. 2023, 62, e202217581;
j) Z. Song, T. Wang, H. Yang, W. H. Kan, Y. Chen, Q. Yu, L. Wang, Y. Zhang, Y. Dai, H. Chen, W. Yin, T. Honda, M. Avdeev, H. Xu, J. Ma, Y. Huang, W. Luo, Nat. Commun. 2024, 15, 1481;
k) Y. Hu, Y. Liu, Y. Lu, Z. Zhang, S. Liu, F. He, Y. Liu, Y. Chen, F. Liu, Adv. Funct. Mater. 2024, 35, 202412070;
l) S. Li, J. Lin, M. Schaller, S. Indris, X. Zhang, T. Brezesinski, C. W. Nan, S. Wang, F. Strauss, Angew. Chem., Int. Ed. 2023, 62, e202314155;
m) C. Wei, R. Wang, Z. Wu, Q. Luo, Z. Jiang, L. Ming, L. Zhang, H. Lu, G. Li, L. Li, C. Yu, S. Cheng, Chem. Eng. J. 2023, 476, 146531;
n) Y. Lu, C. Zhao, J. Hu, S. Sun, H. Yuan, Z. Fu, X. Chen, J. Huang, M. Ouyang, Q. Zhang, Sci. Adv. 2022, 8, eadd0510;
o) H. Shen, S. Jing, S. Liu, Y. Huang, F. He, Y. Liu, Z. Zhuang, Z. Zhang, F. Liu, Adv. Powder Mater. 2023, 2, 100136;
p) Y. Wu, L. Wang, S. Wei, X. Bi, H. Zhuo, W. Xiao, T. Yu, Y. Duan, C. Zhao, R. Yang, J. Liang, X. Li, J. Wang, X. Sun, Adv. Energy Mater. 2024, 14, 2401528.
q) R. Zhu, Z. Li, W. Zhang, A. Nasu, H. Kobayashi, M. Matsui, J. Electrochem. 2024, 30, 2415002;
10.61558/2993-074X.3476 Google Scholarr) R. Götz, R. Streng, J. Sterzinger, T. Steeger, M. M. Kaye, M. Vitort, A. S. Bandarenka, InfoMat 2024, 6, e12627; s) Y. Lin, H. Liu, Y. Hu, Y. Lu, Z. Zhang, Y. Liu, Y. Chen, K. Zhang, S. Yin, F. Liu, Phys. Chem. Chem. Phys. 2025, 27, 3455.
- 3a) Y. Xiao, Y. Wang, S. H. Bo, J. C. Kim, L. J. Miara, G. Ceder, Nat. Rev. Mater. 2020, 5, 105; b) J. C. Bachman, S. Muy, A. Grimaud, H. H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Chem. Rev. 2016, 116, 140.
- 4V. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev. 2014, 43, 4714.
- 5N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater. 2011, 10, 682.
- 6S. Ohno, C. Rosenbach, G. F. Dewald, J. Janek, W. G. Zeier, Adv. Funct. Mater. 2021, 31, 2010620.
- 7a) X. Li, J. Liang, N. Chen, J. Luo, K. R. Adair, C. Wang, M. N. Banis, T. K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, X. Sun, Angew. Chem., Int. Ed. 2019, 58, 16427; b) R. Schlem, S. Muy, N. Prinz, A. Banik, Y. Shao-Horn, M. Zobel, W. G. Zeier, Adv. Energy Mater. 2019, 10, 1903719; c) J. Liang, X. Li, S. Wang, K. R. Adair, W. Li, Y. Zhao, C. Wang, Y. Hu, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, Y. Mo, X. Sun, J. Am. Chem. Soc. 2020, 142, 7012; d) K. Wang, Q. Ren, Z. Gu, C. Duan, J. Wang, F. Zhu, Y. Fu, J. Hao, J. Zhu, L. He, C. W. Wang, Y. Lu, J. Ma, C. Ma, Nat. Commun. 2021, 12, 4410.
- 8a) Z. Liu, S. Ma, J. Liu, S. Xiong, Y. Ma, H. Chen, ACS Energy Lett. 2021, 6, 298; b) H. Kwak, D. Han, J. Lyoo, J. Park, S. H. Jung, Y. Han, G. Kwon, H. Kim, S. T. Hong, K. W. Nam, Y. S. Jung, Adv. Energy Mater. 2021, 11, 2003190; c) X. Li, J. Liang, K. R. Adair, J. Li, W. Li, F. Zhao, Y. Hu, T. K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, N. Chen, X. Sun, Nano Lett. 2020, 20, 4384; d) L. Hu, J. Wang, K. Wang, Z. Gu, Z. Xi, H. Li, F. Chen, Y. Wang, Z. Li, C. Ma, Nat. Commun. 2023, 14, 3807.
- 9Y. C. Yin, J. T. Yang, J. D. Luo, G. X. Lu, Z. Huang, J. P. Wang, P. Li, F. Li, Y. C. Wu, T. Tian, Y. F. Meng, H. S. Mo, Y. H. Song, J. N. Yang, L. Z. Feng, T. Ma, W. Wen, K. Gong, L. J. Wang, H. X. Ju, Y. Xiao, Z. Li, X. Tao, H. B. Yao, Nature 2023, 616, 77.
- 10J. Jang, Y.-T. Chen, G. Deysher, D. Cheng, S.-Y. Ham, A. Cronk, P. Ridley, H. Yang, B. Sayahpour, B. Han, W. Li, W. Yao, E. A. Wu, J.-M. Doux, L. H. B. Nguyen, J. A. S. Oh, D. H. S. Tan, Y. S. Meng, ACS Energy Lett. 2022, 7, 2531.
- 11a) Q. Luo, C. Liu, L. Li, Z. Jiang, J. Yang, S. Chen, X. Chen, L. Zhang, S. Cheng, C. Yu, J. Energy Chem. 2024, 99, 484; b) S. Lee, Y. Kim, C. Park, J. Kim, J.-S. Kim, H. Jo, C. J. Lee, S. Choi, D.-H. Seo, S.-K. Jung, ACS Energy Lett. 2024, 9, 1369.
- 12W. Kim, J. Noh, S. Lee, K. Yoon, S. Han, S. Yu, K. H. Ko, K. Kang, Adv. Mater. 2023, 35, 2301631.
- 13I. Kochetkov, T.-T. Zuo, R. Ruess, B. Singh, L. Zhou, K. Kaup, J. Janek, L. Nazar, Energy Environ. Sci. 2022, 15, 3933.
- 14a) Z. Liu, S. Ma, J. Liu, S. Xiong, Y. Ma, H. Chen, ACS Energy Lett. 2020, 6, 298; b) B. Hennequart, M. Platonova, R. Chometon, T. Marchandier, A. Benedetto, E. Quemin, R. Dugas, C. Lethien, J.-M. Tarascon, ACS Energy Lett. 2024, 9, 454.
- 15a) H. Zhang, F. Xu, X. Chen, W. Xia, Batteries 2023, 9, 510; b) S. Kim, Y. Lee, K. Kim, B. C. Wood, S. S. Han, S. Yu, ACS Energy Lett. 2023, 9, 38.
- 16Q. Wang, Z. Shen, P. Du, Y. Zhou, P. Zhang, Y. Liu, Inorg. Chem. Front. 2024, 11, 5810.
- 17a) R. Jung, M. Metzger, F. Maglia, C. Stinner, H. A. Gasteiger, J. Electrochem. Soc. 2017, 164, A1361; b) T. Bartsch, F. Strauss, T. Hatsukade, A. Schiele, A. Y. Kim, P. Hartmann, J. Janek, T. Brezesinski, ACS Energy Lett. 2018, 3, 2539.
- 18a) Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, Joule 2022, 6, 1172; b) H. Chen, H. Zhang, Y. Zhou, J. Chen, X. Huang, B. Tian, J. Power Sources 2023, 583, 233579.
- 19G. H. Chun, J. H. Shim, S. Yu, ACS Appl. Mater. Interfaces 2022, 14, 1241.
- 20W. He, C. Zhang, M. Wang, B. Wei, Y. Zhu, J. Wu, C. Liang, L. Chen, P. Wang, W. Wei, Adv. Funct. Mater. 2022, 32, 2200322.
- 21T. H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Electrochim. Acta 2015, 184, 483.