Photoresponsive Bio-Heterojunctions Eliciting Immunogenicity to Prevent Infection Recurrence and Accelerating Chronic Wound Regeneration
Yingming Yang
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041 China
Search for more papers by this authorKunneng Liang
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041 China
Search for more papers by this authorZilin Zhou
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041 China
Search for more papers by this authorYuanyuan Tu
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041 China
Search for more papers by this authorMeng Li
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041 China
Search for more papers by this authorZiyou Wang
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041 China
Search for more papers by this authorCorresponding Author
Yi Deng
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jiyao Li
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYingming Yang
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041 China
Search for more papers by this authorKunneng Liang
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041 China
Search for more papers by this authorZilin Zhou
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041 China
Search for more papers by this authorYuanyuan Tu
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041 China
Search for more papers by this authorMeng Li
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041 China
Search for more papers by this authorZiyou Wang
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041 China
Search for more papers by this authorCorresponding Author
Yi Deng
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jiyao Li
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065 China
Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu, 610041 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Dynamic therapy utilizes reactive oxygen species (ROS) to antibacterial and enhance the innate immune system to treat bacterial infections. If ROS levels are too low, the elimination of pathogens and the enhancement of innate immunity cannot be achieved. However, excess accumulation of ROS may impact intracellular glutathione (GSH) levels, hindering T cell maturation and the establishment of immune memory. Herein, a multifunctional nanofiber membrane is designed, consisting of a polymer scaffold, MXene/CeO2 bio-heterojunctions (MX@Ce bio-HJs), and lactate oxidase (Lox) to balance the production of ROS, for the treatment of recurrent bacterial infections. In this system, MX@Ce bio-HJs upon near-infrared ray (NIR) generate photodynamic therapy, while Lox responds to the wound microenvironment exert chemodynamic therapy, synergistically produce ROS to rapidly eradicate bacteria, amplify the ability of dendritic cells to recognize and present antigens of bacterial fragments, and enhance innate immunity. Without NIR, MX@Ce bio-HJs showcase catalase-like and superoxide dismutase-like activities, scavenging subsequent ROS accumulation, promoting T cell maturation to form acquired immune memory, and combating recurrent bacterial infection. Such work highlights the potential to combat in situ bacterial infections and recurrent bacterial infections and inspires the development of future antibacterial therapies.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410522-sup-0001-SuppMat.docx13.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Chin, G. Zhong, Q. Pu, C. Yang, W. Lou, P. F. De Sessions, B. Periaswamy, A. Lee, Z. C. Liang, X. Ding, Nat. Commun. 2018, 9, 917.
- 2J. M. V. Makabenta, A. Nabawy, C.-H. Li, S. Schmidt-Malan, R. Patel, V. M. Rotello, Nat. Rev. Microbiol. 2021, 19, 23.
- 3J. Huang, R. Yang, J. Jiao, Z. Li, P. Wang, Y. Liu, S. Li, C. Chen, Z. Li, G. Qu, Nat. Commun. 2023, 14, 7856.
- 4L. C. Powell, J. K. Cullen, G. M. Boyle, T. De Ridder, P.-Y. Yap, W. Xue, C. J. Pierce, M. F. Pritchard, G. E. Menzies, M. Abdulkarim, Sci. Transl. Med. 2022, 14, eabn3758.
- 5D.-W. Zheng, W.-W. Deng, W.-F. Song, C.-C. Wu, J. Liu, S. Hong, Z.-N. Zhuang, H. Cheng, Z.-J. Sun, X.-Z. Zhang, Nat. Biomed. Eng. 2022, 6, 32.
- 6Z. Ming, L. Han, M. Bao, H. Zhu, S. Qiang, S. Xue, W. Liu, Adv. Sci. 2021, 8, 2102545.
- 7F. A. Pinho-Ribeiro, L. Deng, D. V. Neel, O. Erdogan, H. Basu, D. Yang, S. Choi, A. J. Walker, S. Carneiro-Nascimento, K. He, Nature 2023, 615, 472.
- 8H. Tang, X. Qu, W. Zhang, X. Chen, S. Zhang, Y. Xu, H. Yang, Y. Wang, J. Yang, W. Yuan, Adv. Mater. 2022, 34, 2107300.
- 9L. Galluzzi, A. Buqué, O. Kepp, L. Zitvogel, G. Kroemer, Nat. Rev. Immunol. 2017, 17, 97.
- 10C. Xu, Y. Jiang, Y. Han, K. Pu, R. Zhang, Adv. Mater. 2021, 33, 2008061.
- 11M. Chang, Z. Hou, M. Wang, C. Li, J. Lin, Adv. Mater. 2021, 33, 2004788.
- 12G. Morris, M. Gevezova, V. Sarafian, M. Maes, Cell Mol. Immunol. 2022, 19, 1079.
- 13R. L. Sabado, S. Balan, N. Bhardwaj, Cell Res. 2017, 27, 74.
- 14K. A. Gelderman, M. Hultqvist, A. Pizzolla, M. Zhao, K. S. Nandakumar, R. Mattsson, R. J. T. Holmdahl, J. Clin. Invest. 2007, 117, 3020.
- 15T. Saksida, B. Jevtić, N. Djedović, Đ. Miljković, I. Stojanović, ANTIOXID REDOX SIGN 2021, 34, 364.
- 16Y. Xiao, M. Shi, Q. Qiu, M. Huang, S. Zeng, Y. Zou, Z. Zhan, L. Liang, X. Yang, H. J. T. Xu, J. Immunol. 2016, 196, 4925.
- 17L. He, G. Huang, H. Liu, C. Sang, X. Liu, T. Chen, S. Adv. 2020, 6, eaay9751.
- 18V. Muravev, A. Parastaev, Y. van den Bosch, B. Ligt, N. Claes, S. Bals, N. Kosinov, E. J. Hensen, Science 2023, 380, 1174.
- 19P. Xia, S. Cao, B. Zhu, M. Liu, M. Shi, J. Yu, Y. Zhang, Angew. Chem., Int. Ed. 2020, 59, 5218.
- 20H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 2014, 43, 5234.
- 21W. Dai, R. Shu, F. Yang, B. Li, H. M. Johnson, S. Yu, H. Yang, Y. K. Chan, W. Yang, D. Bai, Adv. Mater. 2023, 36, 2305277.
- 22Q. Li, X. Xu, J. Guo, J. P. Hill, H. Xu, L. Xiang, C. Li, Y. Yamauchi, Y. Mai, Angew. Chem., Int. Ed. 2021, 133, 26732.
- 23F. Seidi, A. Arabi Shamsabadi, M. Dadashi Firouzjaei, M. Elliott, M. R. Saeb, Y. Huang, C. Li, H. Xiao, B. Anasori, Small 2023, 19, 2206716.
- 24Q. Zhong, Y. Li, G. Zhang, Chem. Eng. J. 2021, 409, 128099.
- 25A. Nel, T. Xia, L. Madler, N. Li, Science 2006, 311, 622.
- 26A. D. Maynard, R. J. Aitken, T. Butz, V. Colvin, K. Donaldson, G. Oberdörster, M. A. Philbert, J. Ryan, A. Seaton, V. Stone, Nature 2006, 444, 267.
- 27S. J. Shepherd, D. Issadore, M. J. Mitchell, Biomaterials 2021, 274, 120826.
- 28U. Stachewicz, T. Qiao, S. C. Rawlinson, F. V. Almeida, W.-Q. Li, M. Cattell, A. H. Barber, Acta Biomater. 2015, 27, 88.
- 29M. F. Bennewitz, T. L. Lobo, M. K. Nkansah, G. z. Ulas, G. W. Brudvig, E. M. Shapiro, ACS Nano 2011, 5, 3438.
- 30E. Buck, V. Maisuria, N. Tufenkji, M. Cerruti, ACS Appl. Bio Mater. 2018, 1, 627.
- 31W.-H. Chen, M. Vázquez-González, A. Zoabi, R. Abu-Reziq, I. Willner, Nat. Commun. 2018, 1, 689.
- 32X. Xu, Y. Zhang, H. Sun, J. Zhou, F. Yang, H. Li, H. Chen, Y. Chen, Z. Liu, Z. M. Qiu, Adv. Electron. Mater. 2021, 7, 2000967.
- 33H. Xiong, S. Lin, J. Goetze, P. Pletcher, H. Guo, L. Kovarik, K. Artyushkova, B. M. Weckhuysen, A. K. Datye, Angew. Chem., Int. Ed. 2017, 129, 9114.
- 34F. Yang, X. Bao, P. Li, X. Wang, G. Cheng, S. Chen, W. Luo, Angew. Chem., Int. Ed. 2019, 58, 14179.
- 35S. Wu, C. Xu, Y. Zhu, L. Zheng, L. Zhang, Y. Hu, B. Yu, Y. Wang, F. J. Xu, Adv. Funct. Mater. 2021, 31, 2103591.
- 36Y. Ke, J. Zhu, Y. Chu, L. Cen, Y. Fu, X. Fan, J. Shao, R. Li, L. Yu, B. Liu, Adv. Funct. Mater. 2022, 32, 2201306.
- 37A. Salas, C. Hernandez-Rocha, M. Duijvestein, W. Faubion, D. McGovern, S. Vermeire, S. Vetrano, N. Vande Casteele, Nat. Rev. Gastro. Hepat. 2020, 17, 323.
- 38Q. Yuan, B. Tang, C. Zhang, Signal Transduction Targeted Ther. 2022, 7, 182.
- 39T. Komada, D. A. Muruve, Nat. Rev. Nephrol. 2019, 15, 501.
- 40D. Li, M. Wu, Signal Transduction Targeted Ther. 2021, 6, 291.
- 41A. G. Levine, A. Arvey, W. Jin, A. Y. Rudensky, Nat. Immunol. 2014, 15, 1070.
- 42D. Alizadeh, M. Trad, N. T. Hanke, C. B. Larmonier, N. Janikashvili, B. Bonnotte, E. Katsanis, N. Larmonier, Cancer Res. 2014, 74, 104.