Untwisting Strategy of MOF Nanosheets in Ultrathin Film Membrane for High Molecular Separation Performance
Corresponding Author
Li-Hao Xu
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 PR China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQiao Zhang
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 PR China
Search for more papers by this authorShen-Hui Li
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 PR China
Search for more papers by this authorFu-Xue Chen
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 PR China
Search for more papers by this authorCorresponding Author
Zhi-Ping Zhao
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 PR China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Li-Hao Xu
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 PR China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQiao Zhang
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 PR China
Search for more papers by this authorShen-Hui Li
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 PR China
Search for more papers by this authorFu-Xue Chen
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 PR China
Search for more papers by this authorCorresponding Author
Zhi-Ping Zhao
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 PR China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Oriented 2D metal-organic framework (MOF) membranes hold considerable promise for industrial separation processes. Nevertheless, the lattice misalignment caused by the twisted stacking of 2D nanosheets reduces the in-plane pore size and exerts a significant impact on the membrane separation performance. Precisely regulating the stacking pattern of oriented 2D MOF membranes remains a significant challenge. Here, a scalable scrape-coating technique supplemented by a vapor untwisting strategy is proposed to directly construct non-twisted and ultrathin Zr-BTB membranes (Zr-BTB-M) on polyvinylidene fluoride (PVDF) substrates. The Zr-BTB nanosheets are induced to undergo lattice reorganization during the coating process, resulting in highly overlapped lattices and the largest in-plane pore channels. The exceptional butyl acetate selective adsorption capacity of non-twisted Zr-BTB, combined with its provision of highly ordered vertical penetrating pathways, significantly enhances molecular transport. After facile polydimethylsiloxane (PDMS) coating, the pervaporation separation index of the PDMS/Zr-BTB-M/PVDF membrane is found to be 9.74 times higher than that of conventional PDMS/PVDF membranes, paving the way for innovative, high-efficiency, energy-saving membrane separation technologies.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410067-sup-0001-SuppMat.pdf5.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) D. S. Sholl, R. P. Lively, Nature 2016, 532, 435; b) Z. Liu, W. Qiu, W. Quan, W. J. Koros, Nat. Mater. 2023, 22, 109.
- 2a) G. Chen, C. Chen, Y. Guo, Z. Chu, Y. Pan, G. Liu, G. Liu, Y. Han, W. Jin, N. Xu, Science 2023, 381, 1350; b) S. J. Datta, A. Mayoral, N. Murthy Srivatsa Bettahalli, P. M. Bhatt, M. Karunakaran, I. D. Carja, D. Fan, P. Graziane, M. Mileo, R. Semino, G. Maurin, O. Terasaki, M. Eddaoudi, Science 2022, 376, 1080; c) H. W. H. Lai, F. M. Benedetti, J. M. Ahn, A. M. Robinson, Y. Wang, I. Pinnau, Z. P. Smith, Y. Xia, Science 2022, 375, 1390; d) B. Sengupta, Q. Dong, R. Khadka, D. K. Behera, R. Yang, J. Liu, J. Jiang, P. Keblinski, G. Belfort, M. Yu, Science 2023, 381, 1098.
- 3a) L.-H. Xu, Y. Li, S.-H. Li, M.-Y. Lv, Z.-P. Zhao, J. Membr. Sci. 2022, 656, 120605; b) T. Sato, H. Nagasawa, M. Kanezashi, T. Tsuru, Chem. Eng. J. 2022, 429, 132188.
- 4a) Y. Liu, T. Hu, J. Zhao, L. Lu, Y. Muhammad, P. Lan, R. He, Y. Zou, Z. Tong, J. Membr. Sci. 2019, 591, 117324; b) K. Knozowska, R. Thür, J. Kujawa, I. Kolesnyk, I. F. J. Vankelecom, W. Kujawski, Sep. Purif. Technol. 2021, 264, 118315.
- 5a) D. Kim, S. Ghosh, N. Akter, A. Kraetz, X. Duan, G. Gwak, N. Rangnekar, J. R. Johnson, K. Narasimharao, M. A. Malik, S. Al-Thabaiti, B. McCool, J. A. Boscoboinik, K. A. Mkhoyan, M. Tsapatsis, Sci. Adv. 2022, 8, eabm8162; b) Y. Wang, Y. Ban, Z. Hu, W. Yang, Angew. Chem., Int. Ed. 2023, 62, 202302181.
- 6a) W. F. Yong, H. Zhang, Prog. Mater. Sci. 2021, 116, 100713; b) J. Li, H. Wang, X. Yuan, J. Zhang, J. W. Chew, Coord. Chem. Rev. 2020, 404, 213116.
- 7a) Y. Ji, G. Chen, G. Liu, J. Zhao, G. Liu, X. Gu, W. Jin, ACS Appl. Mater. Interfaces 2019, 11, 36717; b) Z. Cao, S. Zeng, Z. Xu, A. Arvanitis, S. Yang, X. Gu, J. Dong, Sci. Adv. 2018, 4, eaau8634.
- 8a) M. S. Denny, J. C. Moreton, L. Benz, S. M. Cohen, Nat. Rev. Mater. 2016, 1, 16078; b) L. Shu, Y. Peng, H. Song, C. Zhu, W. Yang, Angew. Chem., Int. Ed. 2023, 62, 202315057; c) S. Cong, Y. Zhou, C. Luo, C. Wang, J. Wang, Z. Wang, X. Liu, Angew. Chem., Int. Ed. 2024, 63, 202319894.
- 9a) L.-H. Xu, S.-H. Li, H. Mao, Y. Li, A.-S. Zhang, S. Wang, W.-M. Liu, J. Lv, T. Wang, W.-W. Cai, L. Sang, W.-W. Xie, C. Pei, Z.-Z. Li, Y.-N. Feng, Z.-P. Zhao, Science 2022, 378, 308; b) S. Song, W. Wang, Y. Zhao, W. Wu, Y. Wei, H. Wang, Angew. Chem., Int. Ed. 2023, 62, 202312995; c) H. Yuan, K. Li, D. Shi, H. Yang, X. Yu, W. Fan, P. J. S. Buenconsejo, D. Zhao, Adv. Mater. 2023, 35, 2211859.
- 10a) G. Liu, Z. Jiang, K. Cao, S. Nair, X. Cheng, J. Zhao, H. Gomaa, H. Wu, F. Pan, J. Membr. Sci. 2017, 523, 185; b) H. Mao, H.-G. Zhen, A. Ahmad, S.-H. Li, Y. Liang, J.-F. Ding, Y. Wu, L.-Z. Li, Z.-P. Zhao, J. Membr. Sci. 2019, 582, 307.
- 11a) D. Cai, Z. Yang, R. Tong, H. Huang, C. Zhang, Y. Xia, Small 2024, 20, 2305778; b) K. Yang, Y. Ban, A. Guo, M. Zhao, Y. Zhou, N. Cao, W. Yang, J. Membr. Sci. 2020, 611, 118419.
- 12a) Q. Liu, Y. Miao, L. F. Villalobos, S. Li, H.-Y. Chi, C. Chen, M. T. Vahdat, S. Song, D. J. Babu, J. Hao, Y. Han, M. Tsapatsis, K. V. Agrawal, Nat. Mater. 2023, 22, 1387; b) S. Aoyama, H. Nagasawa, M. Kanezashi, T. Tsuru, ACS Nano 2022, 16, 10302; c) X. Wang, Q. Lyu, T. Tong, K. Sun, L.-C. Lin, C. Y. Tang, F. Yang, M. D. Guiver, X. Quan, Y. Dong, Nat. Commun. 2022, 13, 266.
- 13a) Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Science 2014, 346, 1356; b) Y. Peng, Y. Li, Y. Ban, W. Yang, Angew. Chem., Int. Ed. 2017, 56, 9757; c) L. Shu, Y. Peng, R. Yao, H. Song, C. Zhu, W. Yang, Angew. Chem., Int. Ed. 2022, 61, 202117577.
- 14a) C. Huang, J. Dong, W. Sun, Z. Xue, J. Ma, L. Zheng, C. Liu, X. Li, K. Zhou, X. Qiao, Q. Song, W. Ma, L. Zhang, Z. Lin, T. Wang, Nat. Commun. 2019, 10, 2779; b) W.-Q. Tang, Y.-J. Zhao, M. Xu, J.-Y. Xu, S.-S. Meng, Y.-D. Yin, Q.-H. Zhang, L. Gu, D.-H. Liu, Z.-Y. Gu, Angew. Chem., Int. Ed. 2021, 60, 6920.
- 15a) Y. Yu, X. Feng, Z. Xie, Y. Wu, H. Xi, AIChE J. 2024, 70, e18290; b) W.-Q. Tang, X. Yi, H. Guan, X.-W. Wang, Y.-W. Gu, Y.-J. Zhao, J. Fu, W. Li, Y. Cheng, S.-S. Meng, M. Xu, Q.-H. Zhang, L. Gu, X. Kong, D.-H. Liu, W. Wang, Z.-Y. Gu, J. Am. Chem. Soc. 2023, 145, 26580.
- 16M. He, L. Feng, J. Wang, Y. Gao, W. Zhang, L. Nie, J. Hao, J. Wang, R. Miao, L. Wang, J. Membr. Sci. 2024, 706, 122963.
- 17J. Liu, W. Gao, X. Zhang, J. Li, Q. Li, G. Li, Y. Zhang, Z. Chen, Chem. Eng. J. 2023, 471, 144238.
- 18Z.-R. Tao, J.-X. Wu, Y.-J. Zhao, M. Xu, W.-Q. Tang, Q.-H. Zhang, L. Gu, D.-H. Liu, Z.-Y. Gu, Nat. Commun. 2019, 10, 2911.
- 19Y. Cheng, W. Q. Tang, L. T. Geng, M. Xu, J. P. Zhu, S. S. Meng, Z. Y. Gu, Chem. Sci. 2024, 15, 4106.
- 20a) S. Yan, B. Luo, L. Yu, F. Lan, Y. Wu, ACS Sustainable Chem. Eng. 2022, 10, 14220; b) Y. Wang, L. Feng, J. Pang, J. Li, N. Huang, G. S. Day, L. Cheng, H. F. Drake, Y. Wang, C. Lollar, J. Qin, Z. Gu, T. Lu, S. Yuan, H.-C. Zhou, Adv. Sci. 2019, 6, 1802059; c) W.-Q. Tang, Y. Cheng, J.-P. Zhu, Y.-Q. Zhou, M. Xu, Z.-Y. Gu, Angew. Chem., Int. Ed. 2024, 63, 202409588.
- 21a) S. Anand, M. C. Vu, D. Mani, J.-B. Kim, T.-H. Jeong, M. A. Islam, S.-R. Kim, Chem. Eng. J. 2023, 462, 142017; b) H.-Y. Chen, Z.-Y. Chen, M. Mao, Y.-Y. Wu, F. Yang, L.-X. Gong, L. Zhao, C.-F. Cao, P. Song, J.-F. Gao, G.-D. Zhang, Y.-Q. Shi, K. Cao, L.-C. Tang, Adv. Funct. Mater. 2023, 33, 2304927.
- 22Y. Zhong, C. Huang, J. Cai, J. Wang, Z. Zeng, Q. Deng, AIChE J. 2023, 69, e17890.
- 23a) Y. L. Xue, J. Huang, C. H. Lau, B. Cao, P. Li, Nat. Commun. 2020, 11, 1461; b) L.-H. Xu, Y. Li, S.-H. Li, H. Mao, Z.-P. Zhao, Chem. Eng. J. 2024, 490, 151606; c) G. Liu, W. Jin, J. Membr. Sci. 2021, 636, 119557.
- 24a) C. Zuo, X. Wang, X. Ding, Z. Zhong, W. Jin, W. Xing, J. Membr. Sci. 2024, 705, 122908; b) L.-H. Xu, S.-H. Li, H. Mao, A.-S. Zhang, W.-W. Cai, T. Wang, Z.-P. Zhao, J. Mater. Chem. A 2021, 9, 11853.