Contact-Engineered Oxide Memtransistors for Homeostasis-Based High-Linearity and Precision Neuromorphic Computing
San Nam
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
Search for more papers by this authorDonghyun Kang
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
Search for more papers by this authorSeong-Pil Jeon
School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorDayul Nam
School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorJeong-Wan Jo
Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ United Kingdom
Search for more papers by this authorSang-Joon Park
Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897 Republic of Korea
Search for more papers by this authorJiyong Lee
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
Search for more papers by this authorMyung-Gil Kim
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
Search for more papers by this authorCorresponding Author
Tae-Jun Ha
Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897 Republic of Korea
E-mail: [email protected][email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Sung Kyu Park
School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
E-mail: [email protected][email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yong-Hoon Kim
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
E-mail: [email protected][email protected]; [email protected]
Search for more papers by this authorSan Nam
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
Search for more papers by this authorDonghyun Kang
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
Search for more papers by this authorSeong-Pil Jeon
School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorDayul Nam
School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorJeong-Wan Jo
Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ United Kingdom
Search for more papers by this authorSang-Joon Park
Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897 Republic of Korea
Search for more papers by this authorJiyong Lee
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
Search for more papers by this authorMyung-Gil Kim
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
Search for more papers by this authorCorresponding Author
Tae-Jun Ha
Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897 Republic of Korea
E-mail: [email protected][email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Sung Kyu Park
School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
E-mail: [email protected][email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yong-Hoon Kim
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
E-mail: [email protected][email protected]; [email protected]
Search for more papers by this authorAbstract
Homeostasis is essential in biological neural networks, optimizing information processing and experience-dependent learning by maintaining the balance of neuronal activity. However, conventional two-terminal memristors have limitations in implementing homeostatic functions due to the absence of global regulation ability. Here, three-terminal oxide memtransistor-based homeostatic synapses are demonstrated to perform highly linear synaptic weight update and enhanced accuracy in neuromorphic computing. Particularly, by leveraging the gate control of contact-engineered indium-gallium-zinc-oxide (IGZO) memtransistor, synaptic weight scaling is enabled for high-linearity and precision neuromorphic computing. Moreover, sinusoidal control of gate voltage is demonstrated, possibly enabling the emulation of higher-order synaptic functions. The device structure of IGZO memtransistor is optimized regarding the source/drain electrode materials and an interfacial layer inserted between the IGZO channel and source electrode. As a result, memtransistors exhibiting high current switching ratio of >104 and reliable endurance characteristics are obtained. Furthermore, through the adaptation of synaptic scaling, emulating the homeostasis, non-linearity values of 0.01 and −0.01 are achieved for potentiation and depression, respectively, exhibiting a recognition accuracy of 91.77% for digit images. It is envisioned that the contact-engineered IGZO memtransistors hold significant promise for implementing the homeostasis in neuromorphic computing for high linearity and high efficiency.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202409510-sup-0001-SuppMat.docx12.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D. James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 2019, 364, 570.
- 2G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L. L. Sanches, I. Boybat, M. Le Gallo, K. Moon, J. Woo, H. Hwang, Y. Leblebici, Adv. Phys.-X 2017, 2, 89.
- 3D. Marković, A. Mizrahi, D. Querlioz, J. Grollier, Nat. Rev. Phys. 2020, 2, 499.
- 4G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, T. Prodromakis, Nanotechnology 2013, 24, 384010.
- 5M. Di Ventra, Y. V. Pershin, Nat. Phys. 2013, 9, 200.
- 6Y. V. Pershin, M. Di Ventra, Neural Networks 2010, 23, 881.
- 7A. Basu, J. Acharya, T. Karnik, H. Liu, H. Li, J.-S. Seo, C. Song, IEEE J. Emerging Sel. Top. Circuits Syst. 2018, 8, 6.
- 8D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory, Psychology Press, New York, 2002.
- 9J. L. Martinez, B. E. Derrick, Annu. Rev. Psychol. 1996, 47, 173.
- 10G. L. Collingridge, S. Peineau, J. G. Howland, Y. T. Wang, Nat. Rev. Neurosci. 2010, 11, 459.
- 11G. G. Turrigiano, S. B. Nelson, Nat. Rev. Neurosci. 2004, 5, 97.
- 12L. F. Abbott, S. B. Nelson, Nat. Neurosci. 2000, 3, 1178.
- 13A. J. Watt, N. S. Desai, Front. Synaptic Neurosci. 2010, 2, 1486.
10.3389/fnsyn.2010.00005 Google Scholar
- 14G. G. Turrigiano, Trends Neurosci. 1999, 22, 221.
- 15A. Dityatev, M. Schachner, P. Sonderegger, Nat. Rev. Neurosci. 2010, 11, 735.
- 16S. Bianchi, I. Muñoz-Martin, E. Covi, A. Bricalli, G. Piccolboni, A. Regev, G. Molas, J. F. Nodin, F. Andrieu, D. Ielmini, Nat. Commun. 2023, 14, 1565.
- 17Y. Guo, H. Wu, B. Gao, H. Qian, Front. Neurosci. 2019, 13, 812.
- 18M. Payvand, F. Moro, K. Nomura, T. Dalgaty, E. Vianello, Y. Nishi, G. Indiveri, Nat. Commun. 2022, 13, 5793.
- 19H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Nano-Micro Lett. 2024, 16, 121.
- 20V. K. Sangwan, H.-S. Lee, H. Bergeron, I. Balla, M. E. Beck, K.-S. Chen, M. C. Hersam, Nature 2018, 554, 500.
- 21S. G. Sarwat, B. Kersting, T. Moraitis, V. P. Jonnalagadda, A. Sebastian, Nat. Nanotechnol. 2022, 17, 507.
- 22M. Wuttig, Nat. Mater. 2005, 4, 265.
- 23A. V. Kolobov, Nat. Mater. 2008, 7, 351.
- 24W. Huh, D. Lee, S. Jang, J. H. Kang, T. H. Yoon, J.-P. So, Y. H. Kim, J. C. Kim, H.-G. Park, H. Y. Jeong, G. Wang, C.-H. Lee, Adv. Mater. 2023, 35, 2211525.
- 25G. Noh, H. Song, H. Choi, M. Kim, J. H. Jeong, Y. Lee, M.-Y. Choi, S. Oh, M. Jo, D. Y. Woo, Y. Jo, E. Park, E. Moon, T. S. Kim, H.-J. Chai, W. Huh, C.-H. Lee, C.-J. Kim, H. Yang, S. Song, H. Y. Jeong, Y.-S. Kim, G.-H. Lee, J. Lim, C. G. Kim, T.-M. Chung, J. Y. Kwak, K. Kang, Adv. Mater. 2022, 34, 2204982.
- 26Y.-N. Zhong, X. Gao, J.-L. Xu, H. Sirringhaus, S.-D. Wang, Adv. Electron. Mater. 2020, 6, 1900955.
- 27S. Sagar, K. Udaya Mohanan, S. Cho, L. A. Majewski, B. C. Das, Sci. Rep. 2022, 12, 3808.
- 28J. H. Nam, S. Oh, H. Y. Jang, O. Kwon, H. Park, W. Park, J.-D. Kwon, Y. Kim, B. Cho, Adv. Funct. Mater. 2021, 31, 2104174.
- 29S.-J. Park, T.-J. Ha, IEEE Electron Device Lett. 2023, 44, 642.
- 30Q. Hu, C. Gu, Q. Li, S. Zhu, S. Liu, Y. Li, L. Zhang, R. Huang, Y. Wu, Adv. Mater. 2023, 35, 2210554.
- 31Z. Q. Wang, H. Y. Xu, X. H. Li, H. Yu, Y. C. Liu, X. J. Zhu, Adv. Funct. Mater. 2012, 22, 2759.
- 32H. Park, S. Oh, S.-H. Jeong, O. Kwon, H. Y. Seo, J.-D. Kwon, Y. Kim, W. Park, B. Cho, ACS Appl. Electron. Mater. 2022, 4, 2923.
- 33M. E. Pereira, J. Deuermeier, P. Freitas, P. Barquinha, W. Zhang, R. Martins, E. Fortunato, A. Kiazadeh, APL Mater. 2022, 10, 011113.
- 34G. G. Turrigiano, Cell 2008, 135, 422.
- 35Y. Ueoka, Y. Ishikawa, J. P. Bermundo, H. Yamazaki, S. Urakawa, Y. Osada, M. Horita, Y. Uraoka, Jpn. J. Appl. Phys. 2014, 53, 03CC04.
- 36S. A. Chekol, S. Menzel, R. W. Ahmad, R. Waser, S. Hoffmann-Eifert, Adv. Funct. Mater. 2022, 32, 2111242.
- 37C.-P. Hsiung, H.-W. Liao, J.-Y. Gan, T.-B. Wu, J.-C. Hwang, F. Chen, M.-J. Tsai, ACS Nano 2010, 4, 5414.
- 38W. Wang, M. Wang, E. Ambrosi, A. Bricalli, M. Laudato, Z. Sun, X. Chen, D. Ielmini, Nat. Commun. 2019, 10, 81.
- 39R. Zhang, H. Huang, Q. Xia, C. Ye, X. Wei, J. Wang, L. Zhang, L. Q. Zhu, Adv. Electron. Mater. 2019, 5, 1800833.
- 40H. Sun, Q. Liu, C. Li, S. Long, H. Lv, C. Bi, Z. Huo, L. Li, M. Liu, Adv. Funct. Mater. 2014, 24, 5679.
- 41H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, M.-J. Tsai, Proc. IEEE 2012, 100, 1951.
- 42I. Valov, R. Waser, J. R. Jameson, M. N. Kozicki, Nanotechnology 2011, 22, 289502.
- 43X. Yan, J. Zhao, S. Liu, Z. Zhou, Q. Liu, J. Chen, X. Y. Liu, Adv. Funct. Mater. 2018, 28, 1705320.
- 44R. A. Sporea, K. M. Niang, A. J. Flewitt, S. R. P. Silva, Adv. Mater. 2019, 31, 1902551.
- 45L. A. Santana, L. M. Reséndiz, A. I. Díaz, F. J. Hernandez-Cuevas, M. Aleman, N. Hernandez-Como, Microelectron. Eng. 2020, 220, 111182.
- 46J.-W. Park, D. Lee, N.-K. Cho, J. Lee, Y. S. Kim, ACS Appl. Electron. Mater. 2019, 1, 530.
- 47Y. Magari, H. Makino, S. Hashimoto, M. Furuta, Appl. Surf. Sci. 2020, 512, 144519.
- 48G. Schon, Acta Chem. Scand. 1973, 27, 2623.
- 49E. Park, S. Jang, G. Noh, Y. Jo, D. K. Lee, I. S. Kim, H.-C. Song, S. Kim, J. Y. Kwak, Nano Lett. 2023, 23, 9626.
- 50S. M. Sze, Y. Li, K. K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, Hoboken, NJ, 2021.
- 51P. Greengard, Science 2001, 294, 1024.
- 52S. E. Hyman, Curr. Biol. 2005, 15, R154.
- 53C. Fu, J. Yang, J. Wang, S. Luo, L. Luo, H. Wei, Y. Li, S. Jiang, G. He, Adv. Mater. 2024, 36, 2409406.
- 54Y.-B. Leng, Z. Lv, S. Huang, P. Xie, H.-X. Li, S. Zhu, T. Sun, Y. Zhou, Y. Zhai, Q. Li, G. Ding, Y. Zhou, S.-T. Han, Adv. Mater. 2024, 36, 2411225.
- 55M. Inubushi, K. Yoshimura, Sci. Rep. 2017, 7, 10199.
- 56P.-Y. Chen, S. Yu, IEEE Des. Test 2019, 36, 31.
- 57X. Feng, S. Li, S. L. Wong, S. Tong, L. Chen, P. Zhang, L. Wang, X. Fong, D. Chi, K.-W. Ang, ACS Nano 2021, 15, 1764.
- 58X. Sun, S. Yu, IEEE J. Emerging Sel. Top. Circuits Syst. 2019, 9, 570.
- 59Y. Choi, S. Oh, C. Qian, J.-H. Park, J. H. Cho, Nat. Commun. 2020, 11, 4595.
- 60P.-Y. Chen, X. Peng, S. Yu, in IEEE Int. Electron Devices Meet.(IEDM), IEEE, San Francisco, CA, USA, 2017.
- 61P.-Y. Chen, X. Peng, S. Yu, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 3067.