Effect of Brief Electrical Stimulation on Cell Biomechanics in Hereditary Sensory Neuropathy
Daniel Ta
School of Science, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorAnu Anthony
School of Science, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorAshour Sliow
School of Science, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorBoyang Wan
School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006 Australia
Search for more papers by this authorLeo Zhang
Centre for Advanced Manufacturing Technology, School of Engineering, Design and Built Environment, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorMichael Higgins
ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute AIIM Facility Innovation Campus, University of Wollongong, Wollongong, New South Wales, 2522 Australia
Search for more papers by this authorLisa Lam
School of Science, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorDavid Mahns
School of Medicine, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorGaetano Gargiulo
Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Penrith, NSW, 2751 Australia
Search for more papers by this authorPaul Breen
Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Penrith, NSW, 2751 Australia
Search for more papers by this authorDamia Mawad
The School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, 2052 Australia
Search for more papers by this authorHerleen Ruprai
School of Science, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorSimon Myers
School of Science, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorDaunia Laurenti
School of Medicine, Western Sydney University, Penrith, New South Wales, 2751 Australia
NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorCorresponding Author
Antonio Lauto
School of Science, Western Sydney University, Penrith, New South Wales, 2751 Australia
E-mail: [email protected]
Search for more papers by this authorDaniel Ta
School of Science, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorAnu Anthony
School of Science, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorAshour Sliow
School of Science, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorBoyang Wan
School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006 Australia
Search for more papers by this authorLeo Zhang
Centre for Advanced Manufacturing Technology, School of Engineering, Design and Built Environment, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorMichael Higgins
ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute AIIM Facility Innovation Campus, University of Wollongong, Wollongong, New South Wales, 2522 Australia
Search for more papers by this authorLisa Lam
School of Science, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorDavid Mahns
School of Medicine, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorGaetano Gargiulo
Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Penrith, NSW, 2751 Australia
Search for more papers by this authorPaul Breen
Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Penrith, NSW, 2751 Australia
Search for more papers by this authorDamia Mawad
The School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, 2052 Australia
Search for more papers by this authorHerleen Ruprai
School of Science, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorSimon Myers
School of Science, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorDaunia Laurenti
School of Medicine, Western Sydney University, Penrith, New South Wales, 2751 Australia
NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, 2751 Australia
Search for more papers by this authorCorresponding Author
Antonio Lauto
School of Science, Western Sydney University, Penrith, New South Wales, 2751 Australia
E-mail: [email protected]
Search for more papers by this authorAbstract
SH-SY5Y neuroblastoma cells are widely used to model neurodegenerative disorders like Alzheimer's, Parkinson's, Huntington's, and Hereditary Sensory Neuropathy type 1A (HSN-1A), a peripheral nerve condition causing axon degeneration and sensory loss. A cell model of HSN-1A is developed by overexpressing wild-type and mutant SPTLC1 genes (C133W, C133Y, V144D). Cells are cultured on plastic and gold substrates, with brief electrical stimulation applied to the gold-grown cells. Atomic force microscopy (AFM) is used to measure Young's modulus, indentation, and energy dissipation. Finite Element Method and non-linear modeling validate the results. In the absence of stimulation, mutant cells show lower stiffness compared to non-transfected cells, indicating a direct biomechanical impact of the mutations. Brief electrical stimulation significantly increases the stiffness of mutant cells, particularly in C133W (99%), C133Y (100%), and V144D (111%) variants, despite the mutations. Energy dissipation of stimulated V144D cells decreases to levels comparable to untreated non-transfected cells. The simulations support the AFM measurements, demonstrating that brief electrical stimulation can partially reverse the biomechanical effects of gene mutations.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202408941-sup-0001-SuppMat.docx2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Shen, M. Ding, Z. Xie, X. Liu, H. Yang, S. Jin, S. Xu, Z. Zhu, Y. Wang, D. Wang, L. Xu, X. Zhou, P. Wang, J. Bi, Front Cell Neurosci. 2019, 13, 568.
- 2M. P. M. Soutar, L. Kempthorne, E. Annuario, C. Luft, S. Wray, R. Ketteler, M. H. R. Ludtmann, H. Plun-Favreau, Autophagy 2019, 15, 2002.
- 3M. Bañez-Coronel, S. Porta, B. Kagerbauer, E. Mateu-Huertas, L. Pantano, I. Ferrer, M. Guzmán, X. Estivill, E. Martí, PLoS Genet. 2012, 8, e1002481.
- 4A. Antony, N. Ng, A. Lauto, J. Coorssen, S. Myers, DNA Cell Biol. 2022, 41, 225.
- 5S. J. Myers, C. S. Malladi, R. A. Hyland, T. Bautista, R. Boadle, P. J. Robinson, G. A. Nicholson, DNA Cell Biol. 2014, 33, 399.
- 6Y. Xie, Y. Qu, Y. Wang, J. Wang, L. Tian, L. Wang, L. Li, Z. Wang, Nano 2021, 16, 12.
- 7T. Zieliński, J. Pabijan, B. Zapotoczny, J. Zemła, J. Wesołowska, J. Pera, M. Lekka, Sci. Rep. 2022, 12, 16276.
- 8A. Sadžak, I. Vlašić, Z. Kiralj, M. Batarelo, N. Oršolić, M. J. Jembrek, I. Kušen, S. Šegota, Molecules 2021, 26, 845.
- 9M. Şahin, G. Öncü, M. A. Yılmaz, D. Özkan, H. Saybaşılı, Neurosci. Lett. 2021, 745, 135628.
- 10Y. Fang, C. Y. Y. Iu, C. N. P. Lui, Y. Zou, C. K. M. Fung, H. W. Li, N. Xi, K. K. L. Yung, K. W. C. Lai, Sci. Rep. 2014, 4, 7074.
- 11Q. Gao, Y. Fang, S. Zhang, H. S. H. Wong, Y. E. Chan, S. S. M. Wong, K. K. L. Yung, K. W. C. Lai, J. Biomech. 2019, 86, 79.
- 12T. M. Kruger, K. J. Bell, T. I. Lansakara, A. V. Tivanski, J. A. Doorn, L. L. Stevens, ACS Chem. Neurosci. 2020, 11, 840.
- 13T. Hohmann, F. Dehghani, Cells. 2019, 8, 362.
- 14E. K. Pillai, K. Franze, Neuron 2024, 112, 342.
- 15C. M. Hall, E. Moeendarbary, G. K. Sheridan, Eur J Neurosci 2021, 53, 3851.
- 16H. Reyes-Pardo, D. P. Sánchez-Herrera, M. Santillán, Phys Biol 2022, 19.
- 17Z. Xu, J. A. Orkwis, G. M. Harris, Int. J. Mol. Sci. 2021, 22, 4821.
- 18Y. Gu, Y. Ji, Y. Zhao, Y. Liu, F. Ding, X. Gu, Y. Yang, Biomaterials 2012, 33, 6672.
- 19M. Auer-Grumbach, Orphanet J Rare Dis 2008, 3, 7.
- 20A. A. Al-Majed, C. M. Neumann, T. M. Brushart, T. Gordon, J Neurosci. 2000, 20, 2602.
- 21T. Gordon, Int. J. Mol. Sci. 2024, 25, 665.
- 22M. C. Costello, E. L. Errante, T. Smartz, W. Z. Ray, A. D. Levi, S. S. Burks, Front Neurosci 2023, 17, 1162851.
- 23S. Feles, C. Overath, S. Reichardt, S. Diegeler, C. Schmitz, J. Kronenberg, C. Baumstark-Khan, R. Hemmersbach, C. E. Hellweg, C. Liemersdorf, Methods Protoc 2022, 5, 58.
- 24K. Baranes, M. Shevach, O. Shefi, T. Dvir, Nano Lett. 2016, 16, 2916.
- 25O. Klymenko, J. Wiltowska-Zuber, M. Lekka, W. Kwiatek, Acta Phys. Pol. A 2009, 115, 548.
- 26M. R. Love, J. Sripetchwandee, S. Palee, S. C. Chattipakorn, M. M. Mower, N. Chattipakorn, J. Cell. Physiol. 2018, 234, 816.
- 27R. Elashnikov, S. Rimpelová, L. Děkanovský, V. Švorčík, O. Lyutakov, J. Mater. Chem. B 2019, 7, 6500.
- 28F. J. Baird, C. L. Bennett, J Genet Syndr Gene Ther 2013, 4, 203.
- 29Y. Guo, H.-S. Gong, J. Zhang, W.-L. Xie, C. Tian, C. Chen, Q. Shi, S.-B. Wang, Y. Xu, B.-Y. Zhang, X.-P. Dong, PLoS One 2012, 7, e30163.
- 30C. Xie, T. Miyasaka, Front Mol Neurosci 2016, 9, 158.
- 31G. M. Xiong, A. T. Do, J. K. Wang, C. L. Yeoh, K. S. Yeo, C. Choong, J. Biol. Eng. 2015, 9, 14.
- 32H. F. Pastrana, A. X. Cartagena-Rivera, A. Raman, A. Ávila, J Nanobiotechnology. 2019, 17, 32.
- 33B. Danisman, M. S. Ertugrul, B. Cicek, A. Hacimuftuoglu, M. E. Sagsoz, Annals of Medical Research 2023, 30, 803.
- 34W. T. Chen, G. B. Lin, Y. Y. Kuo, C. H. Hsieh, C. H. Lu, Y. K. Sun, C. Y. Chao, PLoS One 2021, 16, e0250491.
- 35M. B. Shenai, K. G. Putchakayala, J. A. Hessler, B. G. Orr, M. M. B. Holl, J. R. Baker, IEEE Transactions on NanoBioscience 2004, 3, 111.
- 36T. R. Deer, R. M. Levy, J. Kramer, L. Poree, K. Amirdelfan, E. Grigsby, P. Staats, A. W. Burton, A. H. Burgher, J. Obray, J. Scowcroft, S. Golovac, L. Kapural, R. Paicius, C. Kim, J. Pope, T. Yearwood, S. Samuel, W. P. McRoberts, H. Cassim, M. Netherton, N. Miller, M. Schaufele, E. Tavel, T. Davis, K. Davis, L. Johnson, N. Mekhail, Pain 2017, 158, 669.
- 37H. C. Lehmann, N. P. Staff, A. Hoke, Exp Neurol 2020, 326, 113140.
- 38K. Yin, G. J. Baillie, I. Vetter, Mol Pain 2016, 12.
- 39J. Kovalevich, D. Langford, Methods Mol Biol 2013, 1078, 9.
- 40N. O. Chahine, C. Blanchette, C. B. Thomas, J. Lu, D. Haudenschild, G. G. Loots, PLoS One 2013, 8, e61651.
- 41T. Dvir, B. P. Timko, M. D. Brigham, S. R. Naik, S. S. Karajanagi, O. Levy, H. Jin, K. K. Parker, R. Langer, D. S. Kohane, Nat. Nanotechnol. 2011, 6, 720.
- 42M. Shevach, S. Fleischer, A. Shapira, T. Dvir, Nano Lett. 2014, 14, 5792.
- 43A. Sliow, Z. Ma, G. Gargiulo, D. Mahns, D. Mawad, P. Breen, M. Stoodley, J. Houang, R. Kuchel, G. Tettamanzi, R. Tilley, S. Frost, J. Morley, L. Longo, A. Lauto, Adv. Sci. 2019, 6.