Crossover of Frenkel and Wannier–Mott Excitons Through Halide Composition Tuning in Mixed Halide Perovskites
Jagjit Kaur
Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute (HBNI), Chhatnag Road, Prayagraj, Uttar Pradesh, 211019 India
Search for more papers by this authorCorresponding Author
Sudip Chakraborty
Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute (HBNI), Chhatnag Road, Prayagraj, Uttar Pradesh, 211019 India
E-mail: [email protected]
Search for more papers by this authorJagjit Kaur
Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute (HBNI), Chhatnag Road, Prayagraj, Uttar Pradesh, 211019 India
Search for more papers by this authorCorresponding Author
Sudip Chakraborty
Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute (HBNI), Chhatnag Road, Prayagraj, Uttar Pradesh, 211019 India
E-mail: [email protected]
Search for more papers by this authorAbstract
Using first-principles G0W0 (G0 is one-electron Green’s function and W0 is the dynamical screening Coloumb potential) coupled Bethe–Salpeter equation (BSE) calculations with spin-orbit coupling, exceptionally strong excitonic effects are identified in several bismuth-based vacancy-ordered mixed halide double perovskites. These perovskites are thermodynamically stable with negative formation energy. For Cs3Bi2X9 (X = Cl,Br,I) double perovskites, both the bandgap and excitonic binding energy decrease as the size of the halogen atom increases. The excitonic effects can be tuned in mixed halide perovskites such as Cs3Bi2I6Cl3, Cs3Bi2I6Br3, Cs3Bi2Br6I3, Cs3Bi2Cl6Br3, Cs3Bi2Br6Cl3, and Cs3Bi2Cl6I3. This study reports the exciton radiative lifetimes of the vacancy-ordered perovskites, revealing that these excitons exhibit long radiative lifetimes, particularly for Cs3Bi2Br6I3 with 11141 at 300 K and 24 at 5 K. The long radiative lifetimes are linked to the delocalization of the exciton (Wannier–Mott type) in real space, whereas the more localized exciton (Frenkel type) in Cs3Bi2Cl6Br3 results in shorter radiative lifetimes of 155 at 300 K and 334 ns at 5 K. Due to their long exciton lifetime, these materials present interesting opportunities for photovoltaic applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202408919-sup-0001-SuppMat.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. D. Stranks, H. J. Snaith, Nat. Nanotechnol. 2015, 10, 391.
- 2J. Cui, Y. Liu, Y. Deng, C. Lin, Z. Fang, C. Xiang, P. Bai, K. Du, X. Zuo, K. Wen, S. Gong, H. He, Z. Ye, Y. Gao, H. Tian, B. Zhao, J. Wang, Y. Jin, Sci. Adv. 2021, 7, eabg8458.
- 3R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 2009, 21, 2632.
- 4Z. Zhang, Y. Liang, H. Huang, X. Liu, Q. Li, L. Chen, D. Xu, Angew. Chem., Int. Ed. 2019, 58, 7263.
- 5G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344.
- 6N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, J. Mannhart, Science 2007, 317, 1196.
- 7A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 8M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
- 9G. Náfrádi, E. Horváth, M. Kollár, A. Horváth, P. Andričević, A. Sienkiewicz, L. Forró, B. Náfrádi, Energy Convers. Manage. 2020, 205, 112423.
- 10M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506.
- 11G. Mannino, I. Deretzis, E. Smecca, A. La Magna, A. Alberti, D. Ceratti, D. Cahen, J. Phys. Chem. Lett. 2020, 11, 2490.
- 12Y. Huang, L. Li, Z. Liu, H. Jiao, Y. He, X. Wang, R. Zhu, D. Wang, J. Sun, Q. Chen, H. Zhou, J. Mater. Chem. A 2017, 5, 8537.
- 13Z. Xu, H. Li, H. Zhao, Q. Fu, H. Tao, S. Wang, Z. Ma, J. Ding, Y. Ma, Y. Han, CrystEngComm 2019, 21, 4169.
- 14J. Kang, L.-W. Wang, J. Phys. Chem. Lett. 2017, 8, 489.
- 15J. Pospisil, O. Zmeskal, S. Nespurek, J. Krajcovic, M. Weiter, A. Kovalenko, Sci. Rep. 2019, 9, 3332.
- 16J. Pospisil, A. Guerrero, O. Zmeskal, M. Weiter, J. J. Gallardo, J. Navas, G. Garcia-Belmonte, Adv. Funct. Mater. 2019, 29, 1900881.
- 17T. E. S. Charlesworth, M. R. Banaji, Psychol. Sci. 2019, 30, 174.
- 18S. Gavranovic, J. Pospisil, O. Zmeskal, V. Novak, P. Vanysek, K. Castkova, J. Cihlar, M. Weiter, ACS Appl. Mater. Interfaces 2022, 14, 20159.
- 19Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 2015, 347, 967.
- 20Y. Chen, H. T. Yi, X. Wu, R. Haroldson, Y. N. Gartstein, Y. I. Rodionov, K. S. Tikhonov, A. Zakhidov, X.-Y. Zhu, V. Podzorov, Nat. Commun. 2016, 7, 12253.
- 21B. Chen, S. Wang, Y. Song, C. Li, F. Hao, Chem. Eng. J. 2022, 430, 132701.
- 22Z. Xiao, Z. Song, Y. Yan, Adv. Mater. 2019, 31, 1803792.
- 23P. Xu, S. Chen, H.-J. Xiang, X.-G. Gong, S.-H. Wei, Chem. Mater. 2014, 26, 6068.
- 24G. Mannino, J. Sanchez-Diaz, E. Smecca, S. Valastro, I. Deretzis, R. S. Sánchez, J. P. Martinez-Pastor, I. Mora-Seró, A. Alberti, Solar RRL 2023, 7, 2300610.
- 25T. Leijtens, R. Prasanna, A. Gold-Parker, M. F. Toney, M. D. McGehee, ACS Energy Lett. 2017, 2, 2159.
- 26C. C. Stoumpos, L. Frazer, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 6804.
- 27G. Volonakis, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, H. J. Snaith, F. Giustino, J. Phys. Chem. Lett. 2016, 7, 1254.
- 28M. R. Filip, S. Hillman, A. A. Haghighirad, H. J. Snaith, F. Giustino, J. Phys. Chem. Lett. 2016, 7, 2579.
- 29H. Lei, D. Hardy, F. Gao, Adv. Funct. Mater. 2021, 31, 2105898.
- 30A. Feng, X. Jiang, X. Zhang, X. Zheng, W. Zheng, O. F. Mohammed, Z. Chen, O. M. Bakr, Chem. Mater. 2020, 32, 7602.
- 31X. Chen, M. Jia, W. Xu, G. Pan, J. Zhu, Y. Tian, D. Wu, X. Li, Z. Shi, Adv. Opt. Mater. 2023, 11, 2202153.
- 32M. Leng, Y. Yang, K. Zeng, Z. Chen, Z. Tan, S. Li, J. Li, B. Xu, D. Li, M. P. Hautzinger, Y. Fu, T. Zhai, L. Xu, G. Niu, S. Jin, J. Tang, Adv. Funct. Mater. 2018, 28, 1704446.
- 33K. Aleksandrov, V. Beznosikov, Phys. Solid State 1997, 39, 695.
- 34Z. Xiao, W. Meng, J. Wang, D. B. Mitzi, Y. Yan, Mater. Horiz. 2017, 4, 206.
- 35R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, et al., Adv. Energy Mater. 2016, 6, 1502458.
- 36L. Mao, Y. Wu, C. C. Stoumpos, B. Traore, C. Katan, J. Even, M. R. Wasielewski, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 11956.
- 37M. V. Kovalenko, L. Protesescu, M. I. Bodnarchuk, Science 2017, 358, 745.
- 38L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692.
- 39S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, et al., Chem. Mater. 2013, 25, 4613.
- 40N. Leblanc, W. Bi, N. Mercier, P. Auban-Senzier, C. Pasquier, Inorg. Chem. 2010, 49, 5824.
- 41F. Jiang, D. Yang, Y. Jiang, T. Liu, X. Zhao, Y. Ming, B. Luo, F. Qin, J. Fan, H. Han, et al., J. Am. Chem. Soc. 2018, 140, 1019.
- 42J. Li, Q. Yu, Y. He, C. C. Stoumpos, G. Niu, G. G. Trimarchi, H. Guo, G. Dong, D. Wang, L. Wang, et al., J. Am. Chem. Soc. 2018, 140, 11085.
- 43N. Leblanc, N. Mercier, L. Zorina, S. Simonov, P. Auban-Senzier, C. Pasquier, J. Am. Chem. Soc. 2011, 133, 14924.
- 44T. L. Hodgkins, C. N. Savory, K. K. Bass, B. L. Seckman, D. O. Scanlon, P. I. Djurovich, M. E. Thompson, B. C. Melot, Chem. Commun. 2019, 55, 3164.
- 45K. M. McCall, C. C. Stoumpos, O. Y. Kontsevoi, G. C. B. Alexander, B. W. Wessels, M. G. Kanatzidis, Chem. Mater. 2019, 31, 2644.
- 46S. Valastro, S. Gavranovic, I. Deretzis, M. Vala, E. Smecca, A. La Magna, A. Alberti, K. Castkova, G. Mannino, Adv. Opt. Mater. 2024, 12, 2302397.
- 47K. K. Bass, L. Estergreen, C. N. Savory, J. Buckeridge, D. O. Scanlon, P. I. Djurovich, S. E. Bradforth, M. E. Thompson, B. C. Melot, Inorg. Chem. 2017, 56, 42.
- 48H. Wu, W. Liu, W. Ma, T. Liang, X. Liu, J. Fan, Appl. Phys. Lett. 2022, 121, 181902.
- 49X. Ai, E. W. Evans, S. Dong, A. J. Gillett, H. Guo, Y. Chen, T. J. H. Hele, R. H. Friend, F. Li, Nature 2018, 563, 536.
- 50K. Takanabe, ACS Catal. 2017, 7, 8006.
- 51N. S. Ginsberg, W. A. Tisdale, Annu. Rev. Phys. Chem. 2020, 71, 1.
- 52L. M. Herz, J. Phys. Chem. Lett. 2018, 9, 6853.
- 53M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, M. F. Crommie, Nat. Mater. 2014, 13, 1091.
- 54H.-P. Komsa, A. V. Krasheninnikov, Phys. Rev. B 2012, 86, 241201.
- 55A. Ramasubramaniam, Phys. Rev. B 2012, 86, 115409.
- 56J. Feng, X. Qian, C.-W. Huang, J. Li, Nat. Photonics 2012, 6, 866.
- 57J.-H. Choi, P. Cui, H. Lan, Z. Zhang, Phys. Rev. Lett. 2015, 115, 066403.
- 58L. Wirtz, A. Marini, A. Rubio, Phys. Rev. Lett. 2006, 96, 126104.
- 59C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, S. G. Louie, Phys. Rev. Lett. 2004, 92, 077402.
- 60D. Y. Qiu, F. H. da Jornada, S. G. Louie, Phys. Rev. Lett. 2013, 111, 216805.
- 61E. L. Shirley, L. X. Benedict, S. G. Louie, Phys. Rev. B 1996, 54, 10970.
- 62J. C. Grossman, M. Rohlfing, L. Mitas, S. G. Louie, M. L. Cohen, Phys. Rev. Lett. 2001, 86, 472.
- 63R. Williams, K. Song, J. Phys. Chem. Solids 1990, 51, 679.
- 64Y. Onodera, Y. Toyozawa, J. Phys. Soc. Jpn. 1967, 22, 833.
- 65A. Trichet, F. Médard, J. Zúńiga-Pérez, B. Alloing, M. Richard, New J. Phys. 2012, 14, 073004.
- 66S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Phys. Rev. Lett. 2007, 98, 126405.
- 67T.-C. Lu, Y.-Y. Lai, Y.-P. Lan, S.-W. Huang, J.-R. Chen, Y.-C. Wu, W.-F. Hsieh, H. Deng, Opt. Express 2012, 20, 5530.
- 68D. Snoke, G. M. Kavoulakis, Rep. Prog. Phys. 2014, 77, 116501.
- 69K. Saito, M. Hasuo, T. Hatano, N. Nagasawa, Solid State Commun. 1995, 94, 33.
- 70T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, M. Bayer, Nature 2014, 514, 343.
- 71R. Laskowski, N. E. Christensen, P. Blaha, B. Palanivel, Phys. Rev. B 2009, 79, 165209.
- 72H. Hiraga, T. Makino, T. Fukumura, A. Ohtomo, M. Kawasaki, Appl. Phys. Lett. 2009, 95, 211908.
- 73Y.-F. Ding, Q.-Q. Zhao, Z.-L. Yu, Y.-Q. Zhao, B. Liu, P.-B. He, H. Zhou, K. Li, S.-F. Yin, M.-Q. Cai, J. Mater. Chem. C 2019, 7, 7433.
- 74Z. Yang, M. Wang, H. Qiu, X. Yao, X. Lao, S. Xu, Z. Lin, L. Sun, J. Shao, Adv. Funct. Mater. 2018, 28, 1705908.
- 75A. E. Maughan, A. M. Ganose, D. O. Scanlon, J. R. Neilson, Chem. Mater. 2019, 31, 1184.
- 76B. Cucco, G. Bouder, L. Pedesseau, C. Katan, J. Even, M. Kepenekian, G. Volonakis, Appl. Phys. Lett. 2021, 119, 18.
- 77F. Zhang, W. Gao, G. J. Cruz, Y.-y. Sun, P. Zhang, J. Zhao, Phys. Rev. B 2023, 107, 235119.
- 78B. Cucco, C. Katan, J. Even, M. Kepenekian, G. Volonakis, ACS Mater. Lett. 2023, 5, 52.
- 79W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
- 80D. Sangalli, A. Ferretti, H. Miranda, C. Attaccalite, I. Marri, E. Cannuccia, P. Melo, M. Marsili, F. Paleari, A. Marrazzo, et al., J. Phys.: Condens. Matter 2019, 31, 325902.
- 81A. Marini, C. Hogan, M. Grüning, D. Varsano, Comput. Phys. Commun. 2009, 180, 1392.
- 82P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al., J. Phys.: Condens. Matter 2009, 21, 395502.
- 83J. P. Perdew, Rev. Lett. 1996, 77, 3865.
- 84D. Hamann, Phys. Rev. B 2013, 88, 085117.
- 85H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- 86L. Hedin, Phys. Rev. 1965, 139, A796.
- 87R. W. Godby, R. J. Needs, Phys. Rev. Lett. 1989, 62, 1169.
- 88A. Oschlies, R. W. Godby, R. J. Needs, Phys. Rev. B 1995, 51, 1527.
- 89R. D. Shannon, Acta Crystallogr. A 1976, 32, 751.
- 90J. Li, Q. Yu, Y. He, C. C. Stoumpos, G. Niu, G. G. Trimarchi, H. Guo, G. Dong, D. Wang, L. Wang, M. G. Kanatzidis, J. Am. Chem. Soc. 2018, 140, 11085.
- 91C. Timmermans, S. Cholakh, G. Blasse, J. Solid State Chem. 1983, 46, 222.
- 92K. M. McCall, Z. Liu, G. Trimarchi, C. C. Stoumpos, W. Lin, Y. He, I. Hadar, M. G. Kanatzidis, B. W. Wessels, ACS Photonics 2018, 5, 3748.
- 93D. Marongiu, M. Saba, F. Quochi, A. Mura, G. Bongiovanni, J. Mater. Chem. C 2019, 7, 12006.
- 94K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T.-W. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Energy Environ. Sci. 2016, 9, 962.
- 95Z. Jiang, Z. Liu, Y. Li, W. Duan, Phys. Rev. Lett. 2017, 118, 266401.
- 96M. Palummo, E. Berrios, D. Varsano, G. Giorgi, ACS Energy Lett. 2020, 5, 457.
- 97R.-I. Biega, M. R. Filip, L. Leppert, J. B. Neaton, J. Phys. Chem. Lett. 2021, 12, 2057.
- 98M. Palummo, M. Bernardi, J. C. Grossman, Nano Lett. 2015, 15, 2794.
- 99H.-Y. Chen, V. A. Jhalani, M. Palummo, M. Bernardi, Phys. Rev. B 2019, 100, 075135.