Electronic Structure Engineering of RuNi Alloys Decrypts Hydrogen and Hydroxyl Active Site Separation and Enhancement for Efficient Alkaline Hydrogen Evolution
Wei Lian
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430073 China
Search for more papers by this authorFeng Chen
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430073 China
Search for more papers by this authorJie Wu
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430073 China
Search for more papers by this authorHaoyang Mo
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430073 China
Search for more papers by this authorQiuyu Zhu
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430073 China
Search for more papers by this authorCorresponding Author
Xian Zhang
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorShaoxian Song
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430073 China
Search for more papers by this authorCorresponding Author
Feifei Jia
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430073 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWei Lian
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430073 China
Search for more papers by this authorFeng Chen
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430073 China
Search for more papers by this authorJie Wu
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430073 China
Search for more papers by this authorHaoyang Mo
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430073 China
Search for more papers by this authorQiuyu Zhu
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430073 China
Search for more papers by this authorCorresponding Author
Xian Zhang
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorShaoxian Song
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430073 China
Search for more papers by this authorCorresponding Author
Feifei Jia
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430073 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Rational design of the active sites of hydrolysis dissociation intermediates to weaken their active site competition and toxicity is a key challenge to achieve efficient and stable hydrogen evolution reaction (HER) in ruthenium-containing alloys. Density Functional Theory (DFT) simulations reveal that the transfer of the d-band electrons from Ru to Ni in RuNi alloys results in a Gibbs free energy of −0.12 eV for the Ru0.250Ni Fcc-site H*. In addition, the high spin state of the electrons outside the Ru nucleus strengthens the adsorption of OH* on the Ru─Ni bond, which weakens the active-site competition and toxicity successfully. This theoretical prediction is confirmed by electrodeposition of prepared aRuxNi, and the RuNi alloys obtained by Ru atom doping have excellent HER properties. aRu0.250Ni has overpotentials of 38 and 162.4 mV at −10 and −100 mA cm−2, respectively, and can be stably operated at −100 mA cm−2 Dual-electrode system aRu0.250Ni//bRu0Ni demonstrates an ultra-low battery voltage (1.86 V @500 mA cm−2) and excellent stability (24 h@300 mA cm−2). This holistic work resolves the mechanism of active site separation and strengthening in RuNi alloys, and provides a new design idea for the preparation of highly efficient alkaline HER electrodes.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202406209-sup-0001-SuppMat.pdf39.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) B. M. Hunter, H. B. Gray, A. M. Muller, Chem. Rev. 2016, 116, 14120; b) N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337; c) D. Zhao, Z. Zhuang, X. Cao, C. Zhang, Q. Peng, C. Chen, Y. Li, Chem. Soc. Rev. 2020, 49, 2215; d) X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148.
- 2a) X. Luo, P. Ji, P. Wang, X. Tan, L. Chen, S. Mu, Adv. Sci. 2022, 9, 2104846; b) W. Chen, B. B. Wu, Y. Y. Wang, W. Zhou, Y. Y. Li, T. Y. Liu, C. Xie, L. T. Xu, S. Q. Du, M. L. Song, D. D. Wang, Y. B. Liu, Y. F. Li, J. L. Liu, Y. Q. Zou, R. Chen, C. Chen, J. Y. Zheng, Y. F. Li, J. Chen, S. Y. Wang, Energy Environ. Sci. 2021, 14, 6428; c) Y. Zhao, Y. Gao, Z. Chen, Z. Li, T. Ma, Z. Wu, L. Wang, Appl. Catal., B 2021, 297, 120395.
- 3D. Li, X. Chen, Y. Lv, G. Zhang, Y. Huang, W. Liu, Y. Li, R. Chen, C. Nuckolls, H. Ni, Appl. Catal., B 2020, 269, 118824.
- 4S. Chu, A. Majumdar, Nature 2012, 488, 294.
- 5Y. He, F. Yan, X. Zhang, C. Zhu, Y. Zhao, B. Geng, S. Chou, Y. Xie, Y. Chen, Adv. Energy Mater. 2023, 13, 2204177.
- 6a) J. Chen, Y. Ma, T. Huang, T. Jiang, S. Park, J. Xu, X. Wang, Q. Peng, S. Liu, G. Wang, W. Chen, Adv. Mater. 2024, 36, 2312369; b) M. Li, H. Wang, W. Zhu, W. Li, C. Wang, X. Lu, Adv. Sci. 2020, 7, 1901833; c) J. Zhang, X. Mao, S. Wang, L. Liang, M. Cao, L. Wang, G. Li, Y. Xu, X. Huang, Angew. Chem., Int. Ed. Engl. 2022, 61, 202116867.
- 7a) J. H. Jung, H. J. Park, J. Kim, S. H. Hur, J. Power Sources 2014, 248, 1156; b) Y. Wang, S. Wang, Z. L. Ma, L. T. Yan, X. B. Zhao, Y. Y. Xue, J. M. Huo, X. Yuan, S. N. Li, Q. G. Zhai, Adv. Mater. 2022, 34, 2107488; c) J. Zhang, G. Chen, Q. Liu, C. Fan, D. Sun, Y. Tang, H. Sun, X. Feng, Angew. Chem., Int. Ed. Engl. 2022, 61, 202209486.
- 8a) C. Rong, X. Shen, Y. Wang, L. Thomsen, T. Zhao, Y. Li, X. Lu, R. Amal, C. Zhao, Adv. Mater. 2022, 34, 2110103; b) S. K. Kaiser, E. Fako, G. Manzocchi, F. Krumeich, R. Hauert, A. H. Clark, O. V. Safonova, N. Lopez, J. Perez-Ramirez, Nat. Catal. 2020, 3, 376; c) X. Wang, Y. Zhang, H. Si, Q. Zhang, J. Wu, L. Gao, X. Wei, Y. Sun, Q. Liao, Z. Zhang, K. Ammarah, L. Gu, Z. Kang, Y. Zhang, J. Am. Chem. Soc. 2020, 142, 4298.
- 9R. Yao, K. Sun, K. Zhang, Y. Wu, Y. Du, Q. Zhao, G. Liu, C. Chen, Y. Sun, J. Li, Nat. Commun. 2024, 15, 2218.
- 10a) M. Y. Yuan, C. Wang, Y. Wang, Y. Wang, X. M. Wang, Y. K. Du, Nanoscale 2021, 13, 13042; b) Q. Hu, K. Gao, X. Wang, H. Zheng, J. Cao, L. Mi, Q. Huo, H. Yang, J. Liu, C. He, Nat. Commun. 2022, 13, 3958.
- 11L. Li, H. Qiu, Y. Zhu, G. Chen, S. She, X. Guo, H. Li, T. Liu, Z. Lin, H. Zhou, Y. Zhu, M. Yang, B. Xu, H. Huang, Appl. Catal., B 2023, 331, 122710.
- 12a) C. G. Morales-Guio, L. A. Stern, X. Hu, Chem. Soc. Rev. 2014, 43, 6555; b) K. L. Zhou, Z. Wang, C. B. Han, X. Ke, C. Wang, Y. Jin, Q. Zhang, J. Liu, H. Wang, H. Yan, Nat. Commun. 2021, 12, 3783.
- 13C. Xu, H. Yu, H. Huang, W. Huang, S. Li, Y. Cao, H. Lu, G. Li, Y. Li, X. Li, Y. Zhang, W. Chen, Chem. Eng. J. 2024, 489, 151295.
- 14X. Chen, C. Chen, M. M. Amjad, D. Sun, B. Sun, K. Zhang, Appl. Catal., B 2024, 344, 123644.
- 15a) Y. Zuo, S. Bellani, G. Saleh, M. Ferri, D. V. Shinde, M. I. Zappia, J. Buha, R. Brescia, M. Prato, R. Pascazio, A. Annamalai, D. O. de Souza, L. De Trizio, I. Infante, F. Bonaccorso, L. Manna, J. Am. Chem. Soc. 2023, 145, 21419; b) C. C. Zhang, L. X. Sun, Y. F. Ouyang, F. Xu, Y. J. Zou, H. L. Chu, K. X. Zhang, B. Li, H. G. Pan, J. Alloys Compd. 2023, 937, 168334; c) K. Dastafkan, X. Shen, R. K. Hocking, Q. Meyer, C. Zhao, Nat. Commun. 2023, 14, 547; d) Y. T. Zhou, Y. F. Liu, H. H. Tang, B. L. Lin, J. Mater. Chem. A 2023, 11, 10720; e) X. C. Fan, B. Li, C. L. Zhu, F. Yan, Y. J. Chen, Nanoscale 2023, 15, 16403; f) L. Zhao, Y. Zhang, Z. Zhao, Q. H. Zhang, L. B. Huang, L. Gu, G. Lu, J. S. Hu, L. J. Wan, Natl. Sci. Rev. 2020, 7, 27; g) D. Yoon, J. Lee, B. Seo, B. Kim, H. Baik, S. H. Joo, K. Lee, Small 2017, 13, 1700052.
- 16a) Y. Shen, Y. Zhou, D. Wang, X. Wu, J. Li, J. Xi, Adv. Energy Mater. 2017, 8, 1701759; b) Q. Wu, M. Luo, J. Han, W. Peng, Y. Zhao, D. Chen, M. Peng, J. Liu, F. M. F. de Groot, Y. Tan, ACS Energy Lett. 2019, 5, 192; c) G. Liu, W. Zhou, B. Chen, Q. Zhang, X. Cui, B. Li, Z. Lai, Y. Chen, Z. Zhang, L. Gu, H. Zhang, Nano Energy 2019, 66, 104173.
- 17a) H. Zhang, H. Su, M. A. Soldatov, Y. Li, X. Zhao, M. Liu, W. Zhou, X. Zhang, X. Sun, Y. Xu, P. Yao, S. Wei, Q. Liu, Small 2021, 17, 2105231; b) M. Y. Yuan, J. Luo, H. Xu, C. Wang, Y. Wang, Y. Wang, X. M. Wang, Y. K. Du, J. Colloid Interface Sci. 2022, 624, 279; c) H. Wang, C. Gao, R. Li, Z. Peng, J. Yang, J. Gao, Y. Yang, S. Li, B. Li, Z. Liu, ACS Sustainable Chem. Eng. 2019, 7, 18744.
- 18T. L. Jiang, Z. C. Liu, Y. Yuan, X. H. Zheng, S. Park, S. Y. Wei, L. X. Li, Y. R. Ma, S. Liu, J. H. Chen, Z. X. Zhu, Y. H. Meng, K. Li, J. F. Sun, Q. Peng, W. Chen, Adv. Mater. 2023, 35, 2300502.
- 19a) Y. Liu, X. Li, Q. H. Zhang, W. D. Li, Y. Xie, H. Y. Liu, L. Shang, Z. Y. Liu, Z. M. Chen, L. Gu, Z. Y. Tang, T. R. Zhang, S. Y. Lu, Angew. Chem., Int. Ed. Engl. 2020, 59, 1718; b) M. You, X. Du, X. Hou, Z. Wang, Y. Zhou, H. Ji, L. Zhang, Z. Zhang, S. Yi, D. Chen, Appl. Catal., B 2022, 317, 121729.
- 20L.-f. Shen, B.-a. Lu, X.-m. Qu, J.-y. Ye, J.-m. Zhang, S.-h. Yin, Q.-h. Wu, R.-x. Wang, S.-y. Shen, T. Sheng, Y.-x. Jiang, S.-g. Sun, Nano Energy 2019, 62, 601.
- 21T. R. Garrick, T. E. Moylan, M. K. Carpenter, A. Kongkanand, J. Electrochem. Soc. 2016, 164, F55.
- 22a) X. Lin, J. Liu, X. Qiu, B. Liu, X. Wang, L. Chen, Y. Qin, Angew. Chem., Int. Ed. Engl. 2023, 62, 202306333; b) W. Li, Y. Zhao, Y. Liu, M. Sun, G. I. N. Waterhouse, B. Huang, K. Zhang, T. Zhang, S. Lu, Angew. Chem., Int. Ed. Engl. 2021, 60, 3290; c) C. Cai, K. Liu, Y. Zhu, P. Li, Q. Wang, B. Liu, S. Chen, H. Li, L. Zhu, H. Li, J. Fu, Y. Chen, E. Pensa, J. Hu, Y. R. Lu, T. S. Chan, E. Cortes, M. Liu, Angew. Chem., Int. Ed. Engl. 2022, 61, 202113664; d) X. Y. Chen, J. W. Wan, J. Wang, Q. H. Zhang, L. Gu, L. R. Zheng, N. Wang, R. B. Yu, Adv. Mater. 2021, 33, 2104764.
- 23a) J. Wang, S. Xin, Y. Xiao, Z. Zhang, Z. Li, W. Zhang, C. Li, R. Bao, J. Peng, J. Yi, S. Chou, Angew. Chem., Int. Ed. Engl. 2022, 61, 202202518; b) M. Li, H. Zhu, Q. Yuan, T. Li, M. Wang, P. Zhang, Y. Zhao, D. Qin, W. Guo, B. Liu, X. Yang, Y. Liu, Y. Pan, Adv. Funct. Mater. 2022, 33, 2210867.
- 24a) Y. J. Zhao, Y. Sun, H. B. Li, S. Y. Zeng, R. Li, Q. X. Yao, H. Y. Chen, Y. Zheng, K. G. Qu, J. Colloid Interface Sci. 2023, 652, 1848; b) Y. He, Z. Ma, F. Yan, C. Zhu, T. Shen, S. L. Chou, X. Zhang, Y. J. Chen, Proc. Natl. Acad. Sci. USA 2024, 121, 2320777121.
- 25X. Liu, S. Y. Zhang, J. S. Liang, S. Z. Li, H. Shi, J. J. Liu, T. Y. Wang, J. T. Han, Q. Li, Small 2022, 18, 202202496.
- 26Y. Liu, X. Li, Q. Zhang, W. Li, Y. Xie, H. Liu, L. Shang, Z. Liu, Z. Chen, L. Gu, Z. Tang, T. Zhang, S. Lu, Angew. Chem., Int. Ed. Engl. 2020, 59, 1718.
- 27a) B. Mao, P. Sun, Y. Jiang, T. Meng, D. Guo, J. Qin, M. Cao, Angew. Chem., Int. Ed. Engl. 2020, 59, 15232; b) R. Sharma, S. Gyergyek, S. M. Andersen, Appl. Catal., B 2022, 311, 121351; c) X. Wang, C. Xu, M. Jaroniec, Y. Zheng, S. Z. Qiao, Nat. Commun. 2019, 10, 4876.
- 28a) Y. Liu, H. Shi, T. Y. Dai, S. P. Zeng, G. F. Han, T. H. Wang, Z. Wen, X. Y. Lang, Q. Jiang, Small 2024, 20, 2311509; b) T. Meng, Y. Chen, Z. Xing, X. Yang, Small Methods 2022, 6, 2101188.
- 29a) Q. Han, Y. Luo, J. Li, X. Du, S. Sun, Y. Wang, G. Liu, Z. Chen, Appl. Catal., B: Environ. 2022, 304, 120937; b) X. Zhang, H. Yi, M. Jin, Q. Lian, Y. Huang, Z. Ai, R. Huang, Z. Zuo, C. Tang, A. Amini, F. Jia, S. Song, C. Cheng, Small 2022, 18, 2203710.
- 30K. Wang, Z. Liu, Q. Gao, N. Li, K. Yu, Appl. Surf. Sci. 2022, 593, 153408.
- 31a) T. Liu, A. Li, C. Wang, W. Zhou, S. Liu, L. Guo, Adv. Mater. 2018, 30, 1803590; b) F.-L. Wang, X.-Y. Li, Y.-W. Dong, J. Nan, Y.-M. Sun, H.-B. Yu, X.-Y. Zhang, B. Dong, Y.-M. Chai, Appl. Surf. Sci. 2022, 589, 152837.
- 32Z. He, J. Hwang, Z. Gong, M. Zhou, N. Zhang, X. Kang, J. W. Han, Y. Chen, Nat. Commun. 2022, 13, 3777.
- 33G. Chen, T. Wang, J. Zhang, P. Liu, H. Sun, X. Zhuang, M. Chen, X. Feng, Adv. Mater. 2018, 30, 1706279.
- 34Y. Wang, P. Zheng, M. Li, Y. Li, X. Zhang, J. Chen, X. Fang, Y. Liu, X. Yuan, X. Dai, H. Wang, Nanoscale 2020, 12, 9669.
- 35T. Gao, X. Li, X. Chen, C. Zhou, Q. Yue, H. Yuan, D. Xiao, Chem. Eng. J. 2021, 424, 130416.