Aluminium, Nitrogen-Dual-Doped Reduced Graphene Oxide Co-Existing with Cobalt-Encapsulated Graphitic Carbon Nanotube as an Activity Modulated Electrocatalyst for Oxygen Electrocatalyst for Oxygen Electrochemistry Applications
Geeta Pandurang Kharabe
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorSidharth Barik
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorSudheesh Kumar Veeranmaril
Physical Sciences and Engineering Division (PSE), KAUST Catalysis Centre (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Saudi Arabia
Search for more papers by this authorAathira Nair
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorRajith Illathvalappil
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorAthira Yoyakki
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorCorresponding Author
Kavita Joshi
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chathakudath Prabhakaran Vinod
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Sreekumar Kurungot
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGeeta Pandurang Kharabe
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorSidharth Barik
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorSudheesh Kumar Veeranmaril
Physical Sciences and Engineering Division (PSE), KAUST Catalysis Centre (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Saudi Arabia
Search for more papers by this authorAathira Nair
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorRajith Illathvalappil
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorAthira Yoyakki
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorCorresponding Author
Kavita Joshi
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chathakudath Prabhakaran Vinod
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Sreekumar Kurungot
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
There is a rising need to create high-performing, affordable electrocatalysts in the new field of oxygen electrochemistry. Here, a cost-effective, activity-modulated electrocatalyst with the capacity to trigger both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in an alkaline environment is presented. The catalyst (Al, Co/N-rGCNT) is made up of aluminium, nitrogen-dual-doped reduced graphene oxide sheets co-existing with cobalt-encapsulated carbon nanotube units. Based on X-ray Absorption Spectroscopy (XAS) studies, it is established that the superior reaction kinetics in Al, Co/N-rGCNT over their bulk counterparts can be attributed to their electronic regulation. The Al, Co/N-rGCNT performs as a versatile bifunctional electrocatalyst for zinc-air battery (ZAB), delivering an open circuit potential ≈1.35 V and peak power density of 106.3 mW cm−2, which are comparable to the system based on Pt/C. The Al, Co/N-rGCNT-based system showed a specific capacity of 737 mAh gZn−1 compared to 696 mAh gZn−1 delivered by the system based on Pt/C. The DFT calculations indicate that the adsorption of Co in the presence of Al doping in NGr improves the electronic properties favoring ORR. Thus, the Al, Co/N-rGCNT-based rechargeable ZAB (RZAB) emerges as a highly viable and affordable option for the development of RZAB for practical applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202400012-sup-0001-SuppMat.pdf4.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) X. L. Tian, L. Wang, B. Chi, Y. Xu, S. Zaman, K. Qi, H. Liu, S. Liao, B. Y. Xia, ACS Catal. 2018, 8, 8970; b) J. Pan, Y. Y. Xu, H. Yang, Z. Dong, H. Liu, B. Y. Xia, Adv. Sci. 2018, 5, 1700691; c) W.-J. Kwak, D. S. Rosy, C. Xia, H. Kim, L. R. Johnson, P. G. Bruce, L. F. Nazar, Y.-K. Sun, A. A. Frimer, M. Noked, S. A. Freunberger, D. Aurbach, Chem. Rev. 2020, 120, 6626; d) R. Mori, RSC Adv. 2013, 3, 11547.
- 2a) V. Caramia, B. Bozzini, Mater. Renew. Sustain. 2014, 3, 28;
10.1007/s40243-014-0028-3 Google Scholarb) H. Su, X.-T. Wang, J.-X. Hu, T. Ouyang, K. Xiao, Z.-Q. Liu, J. Mater. Chem. A 2019, 7, 22307; c) Y.-P. Deng, Y. Jiang, R. Liang, S.-J. Zhang, D. Luo, Y. Hu, X. Wang, J.-T. Li, A. Yu, Z. Chen, Nat. Commun. 2020, 11, 1952; d) T. Tang, W.-J. Jiang, X.-Z. Liu, J. Deng, S. Niu, B. Wang, S.-F. Jin, Q. Zhang, L. Gu, J.-S. Hu, L.-J. Wan, J. Am. Chem. Soc. 2020, 142, 7116.
- 3J. Shi, K. Mao, Q. Zhang, Z. Liu, F. Long, L. Wen, Y. Hou, X. Li, Y. Ma, Y. Yue, L. Li, C. Zhi, Y. Gao, Nanomicro. Lett. 2023, 15, 53.
- 4a) H.-X. Zhong, J. Wang, Q. Zhang, F. Meng, D. Bao, T. Liu, X.-Y. Yang, Z.-W. Chang, J.-M. Yan, X.-B. Zhang, Adv. Sustain. Syst. 2017, 1, 1700020;
b) C. Xie, Q. Wang, C. Xiao, L. Yang, M. Lan, S. Yang, J. Xiao, F. Xiao, S. Wang, Carbon 2021, 178, 640;
c) J. Zhu, X. Wei, Y. Li, P. K. Shen, in Electrochemical Oxygen Reduction: Fundamental and Applications (Ed.: P. K. Shen), Springer Singapore, Singapore, 2021, 215.
10.1007/978-981-33-6077-8_6 Google Scholar
- 5a) S. K. Singh, V. Kashyap, N. Manna, S. N. Bhange, R. Soni, R. Boukherroub, S. Szunerits, S. Kurungot, ACS Catal. 2017, 7, 6700; b) T. Palaniselvam, M. O. Valappil, R. Illathvalappil, S. Kurungot, Energy Environ. Sci. 2014, 7, 1059.
- 6J. S. Lee, G. S. Park, H. I. Lee, S. T. Kim, R. Cao, M. Liu, J. Cho, Nano Lett. 2011, 11, 5362.
- 7a) J.-S. Lee, S. T. Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee, J. Cho, Adv. Energy Mater. 2011, 1, 34; b) L. Yang, L. Shi, D. Wang, Y. Lv, D. Cao, Nano Energy 2018, 50, 691.
- 8a) C. Tang, B. Wang, H.-F. Wang, Q. Zhang, Adv. Mater. 2017, 29, 1703185; b) M. Xiao, Z. Xing, Z. Jin, C. Liu, J. Ge, J. Zhu, Y. Wang, X. Zhao, Z. Chen, Adv. Mater. 2020, 32, 2004900; c) H. Shang, W. Sun, R. Sui, J. Pei, L. Zheng, J. Dong, Z. Jiang, D. Zhou, Z. Zhuang, W. Chen, J. Zhang, D. Wang, Y. Li, NanoLett 2020, 20, 5443; d) G. Yasin, S. Ali, S. Ibraheem, A. Kumar, M. Tabish, M. A. Mushtaq, S. Ajmal, M. Arif, M. A. Khan, A. Saad, L. Qiao, W. Zhao, ACS Catal. 2023, 2313.
- 9a) M. D. Bhatt, G. Lee, J. S. Lee, J. Phys. Chem. C 2016, 120, 26435; b) S. Barik, G. P. Kharabe, R. Illathvalappil, C. P. Singh, F. Kanheerampockil, P. S. Walko, S. K. Bhat, R. N. Devi, C. P. Vinod, S. Krishnamurty, S. Kurungot, Small n/a, 2304143; c) G. P. Kharabe, R. Illathvalappil, S. Barik, F. Kanheerampockil, P. S. Walko, S. K. Bhat, R. N. Devi, S. Kurungot, Sustain. Energy Fuels 2023, 7, 2428.
- 10a) M. Munro, J. Am. Ceram. Soc. 1997, 80, 1919; b) L. Chen, H. Jang, M. G. Kim, Q. Qin, X. Liu, J. Cho, Nanoscale 2020, 12, 13680; c) Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed 2013, 52, 3110; d) L. Ma, Z. Liu, T. Chen, Y. Liu, G. Fang, Electrochim. Acta 2020, 355, 136777; e) M. Ashraf, Z. Liu, D. Zhang, M. Najafi, Ionics 2020, 26, 2211.
- 11a) Y. Qin, H.-H. Wu, L. A. Zhang, X. Zhou, Y. Bu, W. Zhang, F. Chu, Y. Li, Y. Kong, Q. Zhang, D. Ding, Y. Tao, Y. Li, M. Liu, X. C. Zeng, ACS Catal. 2019, 9, 610; b) P. Du, X. Xiao, F. Ma, H. Wang, J. Shen, F. Lyu, Y. Chen, J. Lu, Y. Li, ACS Appl. Nano Mater. 2020, 3, 5637; c) R. Chen, H. Li, D. Chu, G. Wang, J. Mater. Chem. C 2009, 113, 20689.
- 12a) L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, C. N. R. Rao, Adv. Mater. 2009, 21, 4726; b) Y. Chen, R. Gao, S. Ji, H. Li, K. Tang, P. Jiang, H. Hu, Z. Zhang, H. Hao, Q. Qu, X. Liang, W. Chen, J. Dong, D. Wang, Y. Li, Angew. Chem., Int. Ed. 2021, 60, 3212.
- 13Q. Dong, X. Zhuang, Z. Li, B. Li, B. Fang, C. Yang, H. Xie, F. Zhang, X. Feng, J. Mater. Chem. A 2015, 3, 7767.
- 14M. Wu, G. Zhang, Y. Hu, J. Wang, T. Sun, T. Regier, J. Qiao, S. Sun, Carbon Energy 2021, 3, 176.
- 15a) W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, J. Am. Chem. Soc. 2014, 136, 14385; b) H. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A. I. Kirkland, X. Duan, Y. Huang, Nat. Catal. 2018, 1, 63; c) Y. Jia, J. Chen, X. Yao, Mater. Chem. Front. 2018, 2, 1250; d) J. Finzel, K. M. Sanroman Gutierrez, A. S. Hoffman, J. Resasco, P. Christopher, S. R. Bare, ACS Catal. 2023, 13, 6462.
- 16a) G. Kharabe, N. Manna, A. Nadeema, S. K. Singh, S. Mehta, A. Nair, K. Joshi, S. Kurungot, J. Mater. Chem. A 2022; b) M. D. Esrafili, P. Nematollahi, Adv. Mater. Lett. 2015, 6, 527.
- 17a) J. Zhang, Z. Xia, L. Dai, Sci. Adv. 2015, 1, e1500564; b) A. Gupta, W. D. Chemelewski, C. Buddie Mullins, J. B. Goodenough, Adv. Mater. 2015, 27, 6063.
- 18a) A. Nadeema, G. Pandurang Kharabe, D. Prakash Biswal, S. Kurungot, ChemElectroChem 2020, 7, 2582; b) X. Chen, S. Chen, J. J. A. S. S. Wang, J. Apsusc. 2016, 379, 291.
- 19Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin, Phys. Chem. Chem. Phys. 2011, 13, 17615.
- 20S. Wang, R. A. W. Dryfe, J. Mater. Chem. A 2013, 1, 5279.
- 21a) M. Abdollahifar, M. Hidaryan, P. Jafari, Bol. Soc. 2018, 57, 66; b) D. Han, D. Lee, Nanomater 2021, 11, 310; c) H.-I. Kim, S. K. Lee, Am. Min. 2021, 106, 389.
- 22a) Y. Wang, L. Qiu, L. Zhang, D.-M. Tang, R. Ma, Y. Wang, B. Zhang, F. Ding, C. Liu, H.-M. Cheng, ACS Nano 2020, 14, 16823; b) Q. Dong, H. Wang, S. Ji, X. Wang, Z. Mo, V. Linkov, R. Wang, Chem. Eur. J 2020, 26, 10752.
- 23D. K. Singh, P. K. Iyer, P. K. Giri, Diam. Relat. Mater. 2010, 19, 1281.
- 24A. Kundu, A. Samanta, C. R. Raj, ACS Appl. Mater. Interfaces 2021, 13, 30486.
- 25A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood, Nat. Nanotechnol. 2008, 3, 210.
- 26a) C. Casiraghi, Phys. Rev. B 2009, 80, 233407; b) D. M. Basko, S. Piscanec, A. C. Ferrari, Phys. Rev. B 2009, 80, 165413.
- 27S. A. Shah, Z. Ji, X. Shen, X. Yue, G. Zhu, K. Xu, A. Yuan, N. Ullah, J. Zhu, P. Song, X. Li, ACS Appl.EnergyMater. 2019, 2, 4075.
- 28K. R. Yoon, C.-K. Hwang, S.-h. Kim, J.-W. Jung, J. E. Chae, J. Kim, K. A. Lee, A. Lim, S.-H. Cho, J. P. Singh, J. M. Kim, K. Shin, B. M. Moon, H. S. Park, H.-J. Kim, K. H. Chae, H. C. Ham, I.-D. Kim, J. Y. Kim, ACS Nano 2021, 15, 11218.
- 29Y. Wu, Y. Wang, Z. Xiao, M. Li, Y. Ding, M.-l. Qi, RSC Adv. 2021, 11, 2693.
- 30Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan, K. Qi, H. Liu, B. Y. Xia, Adv. Funct. Mater. 2020, 30, 1906081.
- 31a) M. Wu, G. Zhang, N. Chen, Y. Hu, T. Regier, D. Rawach, S. Sun, ACS Energy Lett. 2021, 6, 1153; b) X. Ning, Y. Li, J. Ming, Q. Wang, H. Wang, Y. Cao, F. Peng, Y. Yang, H. Yu, Chem. Sci. 2019, 10, 1589; c) X. Lu, D. Wang, L. Ge, L. Xiao, H. Zhang, L. Liu, J. Zhang, M. An, P. Yang, New J. Chem. 2018, 42, 19665.
- 32P. Panda, N. Gopala Krishna, P. Rajput, R. Rajagopalan, Phys. Chem. Chem. Phys. 2018, 20.
- 33a) M. Lü, C. Dong, Y. Wang, J. Wuhan Univ. Technol 2013, 28, 868; b) C. Ozgit-Akgun, E. Goldenberg, A. K. Okyay, N. Biyikli, J. Mater. Chem. C 2014, 2, 2123.
- 34a) Y. Yang, R. Zeng, Y. Xiong, F. J. DiSalvo, H. D. Abruña, J. Am. Chem. Soc. 2019, 141, 19241; b) T. Palaniselvam, V. Kashyap, S. N. Bhange, J.-B. Baek, S. Kurungot, Adv. Funct. Mater. 2016, 26, 2150; c) B. Sarkar, D. Das, K. K. Nanda, Green Chem. 2020, 22, 7884.
- 35H. Funke, A. C. Scheinost, M. Chukalina, Phys. Rev. B 2005, 71, 094110.
- 36K. G. Kirste, S. Laassiri, Z. Hu, D. Stoian, L. Torrente-Murciano, J. S. J. Hargreaves, K. Mathisen, Phys. Chem. Chem. Phys 2020, 22, 18932.
- 37D. Gajdek, P. A. T. Olsson, S. Blomberg, J. Gustafson, P.-A. Carlsson, D. Haase, E. Lundgren, L. R. Merte, J. Phys. Chem. C 2022, 126, 3411.
- 38W. Xu, S. Lang, K. Wang, R. Zeng, H. Li, X. Feng, M. R. Krumov, S.-M. Bak, C. J. Pollock, J. Yeo, Y. Du, H. D. Abruña, Sci. Adv. 2023, 9, eadi5108.
- 39I. S. Amiinu, X. Liu, Z. Pu, W. Li, Q. Li, J. Zhang, H. Tang, H. Zhang, S. Mu, Adv. Funct. Mater. 2018, 28, 1704638.
- 40a) H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu, L. Wang, W. Li, Z. Chen, X. Ji, J. Li, Energy Environ. Sci. 2019, 12, 322; b) S. Lu, Y. Shi, W. Zhou, Z. Zhang, F. Wu, B. Zhang, J. Am. Chem. Soc. 2022, 144, 3250.
- 41a) G. Li, K. Zhang, M. Mezaal, R. Zhang, L. Lei, Int. J. Electrochem. Sci. 2015, 10, 6672; b) M. S. Whittingham, Chem. Rev. 2014, 114, 11414; c) S. Siahrostami, V. Tripković, K. T. Lundgaard, K. E. Jensen, H. A. Hansen, J. S. Hummelshøj, J. S. G. Mýrdal, T. Vegge, J. K. Nørskov, J. Rossmeisl, Phys. Chem. Chem. Phys. 2013, 15, 6416.