From Structure to Application: The Evolutionary Trajectory of Spherical Nucleic Acids
Guijia Wang
Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorSanyang Han
Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Yuan Lu
Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]
Search for more papers by this authorGuijia Wang
Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorSanyang Han
Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Yuan Lu
Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Since the proposal of the concept of spherical nucleic acids (SNAs) in 1996, numerous studies have focused on this topic and have achieved great advances. As a new delivery system for nucleic acids, SNAs have advantages over conventional deoxyribonucleic acid (DNA) nanostructures, including independence from transfection reagents, tolerance to nucleases, and lower immune reactions. The flexible structure of SNAs proves that various inorganic or organic materials can be used as the core, and different types of nucleic acids can be conjugated to realize diverse functions and achieve surprising and exciting outcomes. The special DNA nanostructures have been employed for immunomodulation, gene regulation, drug delivery, biosensing, and bioimaging. Despite the lack of rational design strategies, potential cytotoxicity, and structural defects of this technology, various successful examples demonstrate the bright and convincing future of SNAs in fields such as new materials, clinical practice, and pharmacy.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1A. V. Pinheiro, D. Han, W. M. Shih, H. Yan, Nat. Nanotechnol. 2011, 6, 763.
- 2N. C. Seeman, H. F. Sleiman, Nat. Rev. Mater. 2017, 3.
- 3F. Hong, F. Zhang, Y. Liu, H. Yan, Chem. Rev. 2017, 117, 12584.
- 4J. I. Cutler, E. Auyeung, C. A. Mirkin, J. Am. Chem. Soc. 2012, 134, 1376.
- 5C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature 1996, 382, 607.
- 6T. A. Taton, C. A. Mirkin, R. L. Letsinger, Science 2000, 289, 1757.
- 7J.-M. Nam, C. S. Thaxton, C. A. Mirkin, Science 2003, 301, 1884.
- 8C. H. J. Choi, L. Hao, S. P. Narayan, E. Auyeung, C. A. Mirkin, Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 7625.
- 9S. P. Narayan, C. H. J. Choi, L. Hao, C. M. Calabrese, E. Auyeung, C. Zhang, O. J. G. M. Goor, C. A. Mirkin, Small 2015, 11, 4173.
- 10M. E. Kyriazi, A. H. El-Sagheer, I. L. Medintz, T. Brown, A. G. Kanaras, Bioconjugate Chem. 2022, 33, 219.
- 11D. S. Seferos, A. E. Prigodich, D. A. Giljohann, P. C. Patel, C. A. Mirkin, Nano Lett. 2009, 9, 308.
- 12M. D. Massich, D. A. Giljohann, D. S. Seferos, L. E. Ludlow, C. M. Horvath, C. A. Mirkin, Mol. Pharmaceutics 2009, 6, 1934.
- 13A. K. R. Lytton-Jean, C. A. Mirkin, J. Am. Chem. Soc. 2005, 127, 12754.
- 14P. S. Randeria, M. R. Jones, K. L. Kohlstedt, R. J. Banga, M. Olvera de la Cruz, G. C. Schatz, C. A. Mirkin, J. Am. Chem. Soc. 2015, 137, 3486.
- 15A. E. Prigodich, O.-S. Lee, W. L. Daniel, D. S. Seferos, G. C. Schatz, C. A. Mirkin, J. Am. Chem. Soc. 2010, 132, 10638.
- 16A. B. Chinen, C. M. Guan, C. H. Ko, C. A. Mirkin, Small 2017, 13, 1603847.
- 17H. Chen, Y. Li, Y. Song, F. Liu, D. Deng, X. Zhu, H. He, X. Yan, L. Luo, Biosens. Bioelectron. 2023, 223, 115029.
- 18J. Liu, L. Guo, Z. Mi, Z. Liu, P. Rong, W. Zhou, J. Controlled Release 2022, 348, 1050.
- 19B. Liu, P. Zhou, K. Wang, S. Gong, M. Luan, N. Li, B. Tang, ACS Sens. 2021, 6, 1949.
- 20S. Li, Q. Jiang, Y. Liu, W. Wang, W. Yu, F. Wang, X. Liu, Anal. Chem. 2021, 93, 11275.
- 21J. Li, J. Wang, S. Liu, N. Xie, K. Quan, Y. Yang, X. Yang, J. Huang, K. Wang, Angew. Chem., Int. Ed. 2020, 59, 20104.
- 22P. Gao, B. Liu, W. Pan, N. Li, B. Tang, Anal. Chem. 2020, 92, 8459.
- 23J. R. Melamed, N. L. Kreuzberger, R. Goyal, E. S. Day, Mol. Ther.–Nucleic Acids 2018, 12, 207.
- 24X. A. Wu, C. H. Choi, C. Zhang, L. Hao, C. A. Mirkin, J. Am. Chem. Soc. 2014, 136, 7726.
- 25C. Zhang, R. J. Macfarlane, K. L. Young, C. H. Choi, L. Hao, E. Auyeung, G. Liu, X. Zhou, C. A. Mirkin, Nat. Mater. 2013, 12, 741.
- 26H. D. Hill, J. E. Millstone, M. J. Banholzer, C. A. Mirkin, ACS Nano 2009, 3, 418.
- 27N. L. Rosi, C. A. Mirkin, Chem. Rev. 2005, 105, 1547.
- 28L. Mei-Ling, L. Yi, Z. Mei-Ling, Z. Ying, H. Xiao-Jing, Biosens. Bioelectron. 2022, 214, 114512.
- 29T. Zeng, J. Fang, Y. Jiang, C. Xing, C. Lu, H. Yang, Anal. Chem. 2022, 94, 18009.
- 30A. Buonerba, A. Grassi, Catalysts 2021, 11, 714.
- 31H. Cai, Y. Xu, N. Zhu, P. He, Y. Fang, Analyst 2002, 127, 803.
- 32J. Zhang, P. Zhao, W. Li, L. Ye, L. Li, Z. Li, M. Li, Angew. Chem., Int. Ed. 2022, 61, 202117562.
- 33M. Huo, S. Li, P. Zhang, Y. Feng, Y. Liu, N. Wu, H. Ju, L. Ding, Anal. Chem. 2019, 91, 3374.
- 34B. Zhang, S. Bai, X. Chao, T. Wu, Z. Chen, Z. Cheng, Y. Xiao, K. Zhang, Y. Bai, Chem. Sci. 2021, 12, 15843.
- 35V. Gulumkar, A. Aarela, O. Moisio, J. Rahkila, V. Tahtinen, L. Leimu, N. Korsoff, H. Korhonen, P. Poijarvi-Virta, S. Mikkola, V. Nesati, E. Vuorimaa-Laukkanen, T. Viitala, M. Yliperttula, A. Roivainen, P. Virta, Bioconjugate Chem. 2021, 32, 1130.
- 36V. Tahtinen, V. Gulumkar, S. K. Maity, A. M. Yliperttula, S. Siekkinen, T. Laine, E. Lisitsyna, I. Haapalehto, T. Viitala, E. Vuorimaa-Laukkanen, M. Yliperttula, P. Virta, Bioconjugate Chem. 2022, 33, 206.
- 37J. D. Brodin, E. Auyeung, C. A. Mirkin, Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 4564.
- 38J. D. Brodin, A. J. Sprangers, J. R. McMillan, C. A. Mirkin, J. Am. Chem. Soc. 2015, 137, 14838.
- 39K. Krishnamoorthy, K. Hoffmann, S. Kewalramani, J. D. Brodin, L. M. Moreau, C. A. Mirkin, M. Olvera de la Cruz, M. J. Bedzyk, ACS Cent. Sci. 2018, 4, 378.
- 40C. D. Kusmierz, K. E. Bujold, C. E. Callmann, C. A. Mirkin, ACS Cent. Sci. 2020, 6, 815.
- 41D. Samanta, S. B. Ebrahimi, C. D. Kusmierz, H. F. Cheng, C. A. Mirkin, J. Am. Chem. Soc. 2020, 142, 13350.
- 42J. Yan, Y. L. Tan, M. J. Lin, H. Xing, J. H. Jiang, Chem. Sci. 2020, 12, 1803.
- 43C. Huang, Z. Han, M. Evangelopoulos, C. A. Mirkin, J. Am. Chem. Soc. 2022, 144, 18756.
- 44R. J. Banga, N. Chernyak, S. P. Narayan, S. T. Nguyen, C. A. Mirkin, J. Am. Chem. Soc. 2014, 136, 9866.
- 45C. E. Callmann, L. E. Cole, C. D. Kusmierz, Z. Huang, D. Horiuchi, C. A. Mirkin, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 17543.
- 46C. E. Callmann, C. D. Kusmierz, J. W. Dittmar, L. Broger, C. A. Mirkin, ACS Cent. Sci. 2021, 7, 892.
- 47E. Dimitrov, N. Toncheva-Moncheva, P. Bakardzhiev, A. Forys, J. Doumanov, K. Mladenova, S. Petrova, B. Trzebicka, S. Rangelov, Nanoscale Adv 2022, 4, 3793.
- 48E. Haladjova, M. Petrova, I. Ugrinova, A. Forys, B. Trzebicka, S. Rangelov, Soft Matter 2022, 18, 5426.
- 49B. J. Hong, I. Eryazici, R. Bleher, R. V. Thaner, C. A. Mirkin, S. T. Nguyen, J. Am. Chem. Soc. 2015, 137, 8184.
- 50W. Ruan, M. Zheng, Y. An, Y. Liu, D. B. Lovejoy, M. Hao, Y. Zou, A. Lee, S. Yang, Y. Lu, M. Morsch, R. Chung, B. Shi, Chem. Commun. 2018, 54, 3609.
- 51X. Hu, G. Ke, L. Liu, X. Fu, G. Kong, M. Xiong, M. Chen, X. B. Zhang, Anal. Chem. 2019, 91, 11374.
- 52C. J. Kim, E. H. Jeong, H. Lee, S. J. Park, Nanoscale 2019, 11, 2501.
- 53R. J. Banga, S. A. Krovi, S. P. Narayan, A. J. Sprangers, G. Liu, C. A. Mirkin, S. T. Nguyen, Biomacromolecules 2017, 18, 483.
- 54R. J. Banga, B. Meckes, S. P. Narayan, A. J. Sprangers, S. T. Nguyen, C. A. Mirkin, J. Am. Chem. Soc. 2017, 139, 4278.
- 55S. Zhu, H. Xing, P. Gordiichuk, J. Park, C. A. Mirkin, Adv. Mater. 2018, 30, 1707113.
- 56P. Bakardzhiev, N. Toncheva-Moncheva, K. Mladenova, S. Petrova, P. Videv, V. Moskova-Doumanova, T. Topouzova-Hristova, J. Doumanov, S. Rangelov, Eur. Polym. J. 2020, 131, 109692.
- 57E. Haladjova, I. Ugrinova, S. Rangelov, Soft Matter 2020, 16, 191.
- 58E. Haladjova, I. Dimitrov, N. Davydova, J. Todorova, I. Ugrinova, A. Forys, B. Trzebicka, S. Rangelov, Biomacromolecules 2021, 22, 971.
- 59K. Jiang, D. Zhao, R. Ye, X. Liu, C. Gao, Y. Guo, C. Zhang, J. Zeng, S. Wang, J. Song, Nanoscale 2022, 14, 1834.
- 60R. Kalinova, K. Mladenova, S. Petrova, J. Doumanov, I. Dimitrov, Materials 2022, 15, 8917.
- 61F. Xiao, X. Fang, H. Li, H. Xue, Z. Wei, W. Zhang, Y. Zhu, L. Lin, Y. Zhao, C. Wu, L. Tian, Angew. Chem., Int. Ed. 2022, 61, 202115812.
- 62X. Tan, X. Lu, F. Jia, X. Liu, Y. Sun, J. K. Logan, K. Zhang, J. Am. Chem. Soc. 2016, 138, 10834.
- 63Y. Fang, X. Lu, D. Wang, J. Cai, Y. Wang, P. Chen, M. Ren, H. Lu, J. Union, L. Zhang, Y. Sun, F. Jia, X. Kang, X. Tan, K. Zhang, J. Am. Chem. Soc. 2021, 143, 1296.
- 64P. Gao, K. Tang, R. Lou, X. Liu, R. Wei, N. Li, B. Tang, Anal. Chem. 2021, 93, 12096.
- 65J. Zhang, W. Li, Y. Qi, G. Wang, L. Li, Z. Jin, J. Tian, Y. Du, Angew. Chem., Int. Ed. 2023, 62, 202214750.
- 66S. Wang, C. M. McGuirk, M. B. Ross, S. Wang, P. Chen, H. Xing, Y. Liu, C. A. Mirkin, J. Am. Chem. Soc. 2017, 139, 9827.
- 67R. Jin, G. Wu, Z. Li, C. A. Mirkin, G. C. Schatz, J. Am. Chem. Soc. 2003, 125, 1643.
- 68R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Science 1997, 277, 1078.
- 69G. Frens, Nat. Phys. Sci. 1973, 241, 20.
- 70R. Jin, G. Wu, Z. Li, C. A. Mirkin, G. C. Schatz, J. Am. Chem. Soc. 2003, 125, 1643.
- 71K. L. Young, A. W. Scott, L. Hao, S. E. Mirkin, G. Liu, C. A. Mirkin, Nano Lett. 2012, 12, 3867.
- 72Y. Li, F. Yang, R. Yuan, X. Zhong, Y. Zhuo, Food Chem. 2022, 389, 133049.
- 73R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, C. A. Mirkin, Science 2011, 334, 204.
- 74S. G. Grancharov, H. Zeng, S. Sun, S. X. Wang, S. O'Brien, C. B. Murray, J. R. Kirtley, G. A. Held, J. Phys. Chem. B 2005, 109, 13030.
- 75J. I. Cutler, D. Zheng, X. Xu, D. A. Giljohann, C. A. Mirkin, Nano Lett. 2010, 10, 1477.
- 76Y.-S. Chen, Y.-C. Hung, I. Liau, G. S. Huang, Nanoscale Res. Lett. 2009, 4, 858.
- 77A. M. Alkilany, C. J. Murphy, J. Nanopart. Res. 2010, 12, 2313.
- 78B. Meckes, R. J. Banga, S. T. Nguyen, C. A. Mirkin, Small 2018, 14, 1702909.
- 79A. J. Sinegra, M. Evangelopoulos, J. Park, Z. Huang, C. A. Mirkin, Nano Lett. 2021, 21, 6584.
- 80Z. Huang, C. E. Callmann, S. Wang, M. K. Vasher, M. Evangelopoulos, S. H. Petrosko, C. A. Mirkin, ACS Cent. Sci. 2022, 8, 692.
- 81F. Jia, X. Lu, X. Tan, K. Zhang, Chem. Commun. 2015, 51, 7843.
- 82S. Faiad, Q. Laurent, A. L. Prinzen, J. Asohan, D. Saliba, V. Toader, H. F. Sleiman, Angew. Chem., Int. Ed. 2023, 62, 202315768.
- 83S. J. Hurst, A. K. R. Lytton-Jean, C. A. Mirkin, Anal. Chem. 2006, 78, 8313.
- 84R. Zhan, W. Guo, X. Gao, X. Liu, K. Xu, B. Tang, Chem. Commun. 2020, 56, 5178.
- 85D. Zhu, P. Song, J. Shen, S. Su, J. Chao, A. Aldalbahi, Z. Zhou, S. Song, C. Fan, X. Zuo, Y. Tian, L. Wang, H. Pei, Anal. Chem. 2016, 88, 4949.
- 86G. Yao, J. Li, Q. Li, X. Chen, X. Liu, F. Wang, Z. Qu, Z. Ge, R. P. Narayanan, D. Williams, H. Pei, X. Zuo, L. Wang, H. Yan, B. L. Feringa, C. Fan, Nat. Mater. 2020, 19, 781.
- 87D. Zhu, J. Li, L. Wang, Q. Li, L. Wang, B. Song, R. Zhou, C. Fan, Chem. Commun. 2021, 57, 3801.
- 88A. B. Chinen, J. R. Ferrer, T. J. Merkel, C. A. Mirkin, Bioconjugate Chem. 2016, 27, 2715.
- 89N. L. Rosi, D. A. Giljohann, C. S. Thaxton, A. K. Lytton-Jean, M. S. Han, C. A. Mirkin, Science 2006, 312, 1027.
- 90F. McKenzie, K. Faulds, D. Graham, Small 2007, 3, 1866.
- 91D. S. Seferos, D. A. Giljohann, N. L. Rosi, C. A. Mirkin, ChemBioChem 2007, 8, 1230.
- 92G. Qiao, Y. Gao, N. Li, Z. Yu, L. Zhuo, B. Tang, Chemistry 2011, 17, 11210.
- 93W. Pan, H. Yang, T. Zhang, Y. Li, N. Li, B. Tang, Anal. Chem. 2013, 85, 6930.
- 94W. Pan, T. Zhang, H. Yang, W. Diao, N. Li, B. Tang, Anal. Chem. 2013, 85, 10581.
- 95N. Li, H. Yang, W. Pan, W. Diao, B. Tang, Chem. Commun. 2014, 50, 7473.
- 96W. Pan, Y. Li, M. Wang, H. Yang, N. Li, B. Tang, Chem. Commun. 2016, 52, 4569.
- 97Y. Yang, J. Huang, X. Yang, X. He, K. Quan, N. Xie, M. Ou, K. Wang, Anal. Chem. 2017, 89, 5850.
- 98D. A. Giljohann, D. S. Seferos, A. E. Prigodich, P. C. Patel, C. A. Mirkin, J. Am. Chem. Soc. 2009, 131, 2072.
- 99D. Zheng, D. A. Giljohann, D. L. Chen, M. D. Massich, X. Q. Wang, H. Iordanov, C. A. Mirkin, A. S. Paller, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 11975.
- 100S. A. Jensen, E. S. Day, C. H. Ko, L. A. Hurley, J. P. Luciano, F. M. Kouri, T. J. Merkel, A. J. Luthi, P. C. Patel, J. I. Cutler, W. L. Daniel, A. W. Scott, M. W. Rotz, T. J. Meade, D. A. Giljohann, C. A. Mirkin, A. H. Stegh, Sci. Transl. Med. 2013, 5, 209ra152.
- 101H. Nemati, M. H. Ghahramani, R. Faridi-Majidi, B. Izadi, G. Bahrami, S. H. Madani, G. Tavoosidana, J. Controlled Release 2017, 268, 259.
- 102P. Kumthekar, C. H. Ko, T. Paunesku, K. Dixit, A. M. Sonabend, O. Bloch, M. Tate, M. Schwartz, L. Zuckerman, R. Lezon, R. V. Lukas, B. Jovanovic, K. McCortney, H. Colman, S. Chen, B. Lai, O. Antipova, J. Deng, L. Li, S. Tommasini-Ghelfi, L. A. Hurley, D. Unruh, N. V. Sharma, M. Kandpal, F. M. Kouri, R. V. Davuluri, D. J. Brat, M. Muzzio, M. Glass, V. Vijayakumar, et al., Sci. Transl. Med. 2021, 13, eabb3945.
- 103M. K. Vasher, G. Yamankurt, C. A. Mirkin, J. Am. Chem. Soc. 2022, 144, 3174.
- 104L. Chen, G. Li, X. Wang, J. Li, Y. Zhang, ACS Nano 2021, 15, 11929.
- 105F. Xiao, L. Lin, Z. Chao, C. Shao, Z. Chen, Z. Wei, J. Lu, Y. Huang, L. Li, Q. Liu, Y. Liang, L. Tian, Angew. Chem., Int. Ed. 2020, 59, 9702.
- 106J. R. Melamed, S. A. Ioele, A. J. Hannum, V. M. Ullman, E. S. Day, Mol. Pharmaceutics 2018, 15, 5135.
- 107S. Tommasini-Ghelfi, A. Lee, C. A. Mirkin, A. H. Stegh, in RNA Interference and Cancer Therapy: Methods and Protocols, (Ed: L. Dinesh Kumar), Springer, New York, NY 2019, 371.
10.1007/978-1-4939-9220-1_25 Google Scholar
- 108F. M. Kouri, L. A. Hurley, W. L. Daniel, E. S. Day, Y. J. Hua, L. L. Hao, C. Y. Peng, T. J. Merkel, M. A. Queisser, C. Ritner, H. L. Zhang, C. D. James, J. I. Sznajder, L. Chin, D. A. Giljohann, J. A. Kessler, M. E. Peter, C. A. Mirkin, A. H. Stegh, Genes Dev. 2015, 29, 732.
- 109K. Zhang, L. Hao, S. J. Hurst, C. A. Mirkin, J. Am. Chem. Soc. 2012, 134, 16488.
- 110J. L. Rouge, T. L. Sita, L. Hao, F. M. Kouri, W. E. Briley, A. H. Stegh, C. A. Mirkin, J. Am. Chem. Soc. 2015, 137, 10528.
- 111Y. Yang, J. Huang, X. Yang, K. Quan, H. Wang, L. Ying, N. Xie, M. Ou, K. Wang, J. Am. Chem. Soc. 2015, 137, 8340.
- 112H. H. Fakih, A. Katolik, E. Malek-Adamian, J. J. Fakhoury, S. Kaviani, M. J. Damha, H. F. Sleiman, Chem. Sci. 2021, 12, 2993.
- 113A. Karami, M. Hasani, F. Azizi Jalilian, R. Ezati, Anal. Chem. 2021, 93, 9250.
- 114Z. N. Huang, L. E. Cole, C. E. Callmann, S. Wang, C. A. Mirkin, ACS Nano 2020, 14, 1084.
- 115Z. N. Huang, C. E. Callmann, L. E. Cole, S. Wang, C. A. Mirkin, ACS Nano 2021, 15, 13329.
- 116M. E. Distler, J. P. Cavaliere, M. H. Teplensky, M. Evangelopoulos, C. A. Mirkin, Proc. Natl. Acad. Sci. U. S. A. 2023, 120, 2215091120.
10.1073/pnas.2215091120 Google Scholar
- 117W. Jiang, F.-G. Zhu, L. Bhagat, D. Yu, J. X. Tang, E. R. Kandimalla, N. La Monica, S. Agrawal, J. Invest. Dermatol. 2013, 133, 1777.
- 118A. F. Radovic-Moreno, N. Chernyak, C. C. Mader, S. Nallagatla, R. S. Kang, L. Hao, D. A. Walker, T. L. Halo, T. J. Merkel, C. H. Rische, S. Anantatmula, M. Burkhart, C. A. Mirkin, S. M. Gryaznov, Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 3892.
- 119L. Qin, S. Wang, D. Dominguez, A. Long, S. Chen, J. Fan, J. Ahn, K. Skakuj, Z. Huang, A. Lee, C. Mirkin, B. Zhang, Front. Immunol. 2020, 11, 1333.
- 120M. H. Teplensky, J. W. Dittmar, L. Qin, S. Wang, M. Evangelopoulos, B. Zhang, C. A. Mirkin, Adv. Healthcare Mater. 2021, 10, 2101262.
- 121S. Wang, L. Qin, G. Yamankurt, K. Skakuj, Z. Huang, P. C. Chen, D. Dominguez, A. Lee, B. Zhang, C. A. Mirkin, Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 10473.
- 122K. Skakuj, M. H. Teplensky, S. Wang, J. W. Dittmar, C. A. Mirkin, ACS Cent. Sci. 2021, 7, 1838.
- 123P. Chen, D. Wang, Y. Wang, L. Zhang, Q. Wang, L. Liu, J. Li, X. Sun, M. Ren, R. Wang, Y. Fang, J. J. Zhao, K. Zhang, Nano Lett. 2022, 22, 4058.
- 124F.-G. Zhu, W. Jiang, L. Bhagat, D. Wang, D. Yu, J. X. Tang, E. R. Kandimalla, N. La Monica, S. Agrawal, Autoimmunity 2013, 46, 419.
- 125J. W. Dittmar, M. H. Teplensky, M. Evangelopoulos, L. Qin, B. Zhang, C. A. Mirkin, ACS Nano 2023, 17, 17996.
- 126P. S. Randeria, M. A. Seeger, X. Q. Wang, H. Wilson, D. Shipp, C. A. Mirkin, A. S. Paller, Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 5573.
- 127A. H. Alhasan, P. C. Patel, C. H. Choi, C. A. Mirkin, Small 2014, 10, 186.
- 128K. Jiao, Q. Yan, L. Guo, Z. Qu, S. Cao, X. Chen, Q. Li, Y. Zhu, J. Li, L. Wang, C. Fan, F. Wang, Angew. Chem., Int. Ed. 2021, 60, 14438.
- 129T. R. Holmes, A. S. Paller, Pharmaceuticals 2020, 13, 360.
- 130H. Li, W. Shen, M. Hon-Wah Lam, H. Liang, New J. Chem. 2017, 41, 5255.
- 131G. Qiao, L. Zhuo, Y. Gao, L. Yu, N. Li, B. Tang, Chem. Commun. 2011, 47, 7458.
- 132G. Zheng, W. L. Daniel, C. A. Mirkin, J. Am. Chem. Soc. 2008, 130, 9644.
- 133J. Liu, Y. Lu, J. Am. Chem. Soc. 2004, 126, 12298.
- 134J. Liu, Y. Lu, J. Am. Chem. Soc. 2003, 125, 6642.
- 135H. Wang, W. Xu, H. Zhang, D. Li, Z. Yang, X. Xie, T. Li, X. Liu, Small 2011, 7, 1987.
- 136X. Xu, W. L. Daniel, W. Wei, C. A. Mirkin, Small 2010, 6, 623.
- 137C. W. Liu, Y. T. Hsieh, C. C. Huang, Z. H. Lin, H. T. Chang, Chem. Commun. 2008, 2242.
- 138J. S. Lee, M. S. Han, C. A. Mirkin, Angew. Chem., Int. Ed. 2007, 46, 4093.
- 139Z. Wang, J. H. Lee, Y. Lu, Adv. Mater. 2008, 20, 3263.
- 140F. Liu, R. Chen, W. Song, L. Li, C. Lei, Z. Nie, Anal. Chem. 2021, 93, 3517.
- 141C. Wiraja, Y. Mori, T. Ichimura, J. Hwang, C. Xu, J. V. Bonventre, Nano Lett. 2021, 21, 5850.
- 142A. Karami, M. Hasani, F. Azizi Jalilian, R. Ezati, Sens. Actuators, B 2021, 328, 128971.
- 143L. Bai, T. Ye, D. Zhu, D. Sun, S. Zhang, Y. Lu, M. Yuan, H. Cao, L. Hao, X. Wu, F. Yin, F. Xu, Luminescence 2022, 37, 1964.
- 144B. Wei, D. Yao, B. Zheng, X. Zhou, Y. Guo, X. Li, C. Li, S. Xiao, H. Liang, ACS Appl. Mater. Interfaces 2019, 11, 19724.
- 145M. Zhou, Y. Yin, Y. Shi, Z. Huang, Y. Shi, M. Chen, G. Ke, X. B. Zhang, Chem. Commun. 2022, 58, 4508.
- 146W. Cao, W. Gao, Z. Liu, W. Hao, X. Li, Y. Sun, L. Tong, B. Tang, Anal. Chem. 2018, 90, 9125.
- 147S. Q. Chai, W. Y. Lv, J. H. He, C. H. Li, Y. F. Li, C. M. Li, C. Z. Huang, Anal. Chem. 2019, 91, 6761.
- 148J. Li, S. Liu, J. Wang, R. Liu, X. Yang, K. Wang, J. Huang, Nucleic Acids Res. 2022, 50, e40.
- 149Z. Liu, J. Zhao, R. Zhang, G. Han, C. Zhang, B. Liu, Z. Zhang, M. Y. Han, X. Gao, ACS Nano 2018, 12, 3629.
- 150J. Shi, M. Zhou, A. Gong, Q. Li, Q. Wu, G. J. Cheng, M. Yang, Y. Sun, Anal. Chem. 2016, 88, 1979.
- 151X. J. Yang, K. Zhang, T. T. Zhang, J. J. Xu, H. Y. Chen, Anal. Chem. 2017, 89, 4216.
- 152M. H. Teplensky, M. Evangelopoulos, J. W. Dittmar, C. M. Forsyth, A. J. Sinegra, S. Wang, C. A. Mirkin, Nat. Biomed. Eng. 2023, 7, 911.
- 153M. H. Teplensky, M. E. Distler, C. D. Kusmierz, M. Evangelopoulos, H. Gula, D. Elli, A. Tomatsidou, V. Nicolaescu, I. Gelarden, A. Yeldandi, D. Batlle, D. Missiakas, C. A. Mirkin, Proc. Natl. Acad. Sci. U. S. A. 2022, 119, 2119093119.
- 154K. T. Lewandowski, R. Thiede, N. Guido, W. L. Daniel, R. Kang, M. I. Guerrero-Zayas, M. A. Seeger, X. Q. Wang, D. A. Giljohann, A. S. Paller, J. Invest. Dermatol. 2017, 137, 2027.
- 155H. Liu, R. S. Kang, K. Bagnowski, J. M. Yu, S. Radecki, W. L. Daniel, B. R. Anderson, S. Nallagatla, A. Schook, R. Agarwal, D. A. Giljohann, A. S. Paller, J. Invest. Dermatol. 2020, 140, 435.
- 156P. Kumthekar, A. Rademaker, C. Ko, K. Dixit, M. A. Schwartz, A. M. Sonabend, L. Sharp, R. V. Lukas, R. Stupp, C. Horbinski, K. McCortney, A. H. Stegh, J. Clin. Oncol. 2019, 37, 3012.
- 157Q. Liu, Y. Huang, L. Li, Z. Li, M. Li, Angew. Chem., Int. Ed. 2023, 62, 202214958.
- 158D. Bousmail, L. Amrein, J. J. Fakhoury, H. H. Fakih, J. C. C. Hsu, L. Panasci, H. F. Sleiman, Chem. Sci. 2017, 8, 6218.
- 159S. D. Brown, P. Nativo, J.-A. Smith, D. Stirling, P. R. Edwards, B. Venugopal, D. J. Flint, J. A. Plumb, D. Graham, N. J. Wheate, J. Am. Chem. Soc. 2010, 132, 4678.
- 160A. R. Rothrock, R. L. Donkers, M. H. Schoenfisch, J. Am. Chem. Soc. 2005, 127, 9362.
- 161J.-S. Lee, P. A. Ulmann, M. S. Han, C. A. Mirkin, Nano Lett. 2008, 8, 529.
- 162B. Li, Y. Liu, Y. Liu, T. Tian, B. Yang, X. Huang, J. Liu, B. Liu, ACS Nano 2020, 14, 8116.
- 163X. Xu, M. S. Han, C. A. Mirkin, Angew. Chem., Int. Ed. 2007, 46, 3468.
- 164C. A. Mirkin, S. H. Petrosko, Clin. Chem. 2018, 64, 971.
- 165Y. Liu, X. Chen, Nat. Biomed. Eng. 2019, 3, 257.
- 166G. Yamankurt, E. J. Berns, A. Xue, A. Lee, N. Bagheri, M. Mrksich, C. A. Mirkin, Nat. Biomed. Eng. 2019, 3, 318.
- 167M. Liu, F. Wang, X. Zhang, X. Mao, L. Wang, Y. Tian, C. Fan, Q. Li, Nat. Protoc. 2021, 16, 383.