Interfacial Engineering of Fluorinated TiO2 Nanosheets with Abundant Oxygen Vacancies for Boosting the Hydrogen Storage Performance of MgH2
Qingyun Shi
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, 230026 China
Search for more papers by this authorYuxing Gao
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, 230026 China
Search for more papers by this authorShaolei Zhao
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, 230026 China
Search for more papers by this authorChunmin Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, 230026 China
Search for more papers by this authorCong Liu
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Chunli Wang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShaohua Wang
National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, GRINM Group Co., Ltd., Beijing, 100088 China
GRIMAT Engineering Institute Co., Ltd., Beijing, 101407 China
Search for more papers by this authorCorresponding Author
Yongzhi Li
School of Science, Inner Mongolia University of Science and Technology, Baotou, 014010 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorDongming Yin
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorLimin Wang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Yong Cheng
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorQingyun Shi
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, 230026 China
Search for more papers by this authorYuxing Gao
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, 230026 China
Search for more papers by this authorShaolei Zhao
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, 230026 China
Search for more papers by this authorChunmin Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, 230026 China
Search for more papers by this authorCong Liu
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Chunli Wang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShaohua Wang
National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, GRINM Group Co., Ltd., Beijing, 100088 China
GRIMAT Engineering Institute Co., Ltd., Beijing, 101407 China
Search for more papers by this authorCorresponding Author
Yongzhi Li
School of Science, Inner Mongolia University of Science and Technology, Baotou, 014010 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorDongming Yin
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorLimin Wang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Yong Cheng
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The interaction between fluorinated surface in the partially reduced nano-crystallite titanium dioxide (TiO2-x(F)) and MgH2 is studied for the first time. Compared with pristine MgH2 (416 °C), the onset desorption temperature of MgH2+5 wt.% TiO2-x(F) composite can be dramatically lowered to 189 °C. In addition, the composite exhibits remarkable dehydrogenation kinetics, which can release 6.0 wt.% hydrogen thoroughly within 6 min at 250 °C. The apparent activation energy for dehydriding is decreased from 268.42 to 119.96 kJ mol−1. Structural characterization and theoretical calculations indicate that the synergistic effect between multivalent Ti species, and the in situ formed MgF2 and MgF2-xHx is beneficial for improving the hydrogen storage performance of MgH2. Moreover, oxygen vacancies can accelerate the electron transportation and facilitate hydrogen diffusion. The study provides a novel perspective on the modification of MgH2 by fluorinated transition metal oxide catalyst.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202307965-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) T. Autrey, P. Chen, J. Energy Chem. 2023, 77, 119; b) T. He, H. Cao, P. Chen, Adv. Mater. 2019, 31, 1902757; c) J. Andersson, Energies 2021, 14, 1392; d) L. Ouyang, K. Chen, J. Jiang, X.u-S. Yang, M. Zhu, J. Alloy. Compd. 2020, 829, 154597.
- 2a) M. D. Allendorf, V. Stavila, J. L. Snider, M. Witman, M. E. Bowden, K. Brooks, B. L. Tran, T. Autrey, Nat. Chem. 2022, 14, 1214; b) Y. Cho, S. Li, J. L. Snider, M. A. T. Marple, N. A. Strange, J. D. Sugar, F. El Gabaly, A. Schneemann, S. Kang, M.-H. Kang, H. Park, J. Park, L. F. Wan, H. E. Mason, M. D. Allendorf, B. C. Wood, E. S. Cho, V. Stavila, ACS Nano 2021, 15, 10163.
- 3a) K. Grubel, H. Jeong, C. W. Yoon, T. Autrey, J. Energy Chem. 2020, 41, 216; b) L. Ren, Y. Li, N. Zhang, Z. Li, X. Lin, W. Zhu, C. Lu, W. Ding, J. Zou, Nano-Micro Lett. 2023, 15, 93; c) S. Dong, C. Li, J. Wang, H. Liu, Z. Ding, Z. Gao, W. Yang, W. Lv, L. Wei, Y. Wu, H. Li, J. Mater. Chem. A 2022, 10, 22363.
- 4a) Y. Luo, P. Wang, L.-P. Ma, H.-M. Cheng, J. Alloys Compd. 2008, 453, 138; b) M. Zhang, X. Xiao, J. Mao, Z. Lan, X. Huang, Y. Lu, B. Luo, M. Liu, M. Chen, L. Chen, Mater. Today Energy 2019, 12, 146; c) T. Huang, X. Huang, C. Hu, J. Wang, H. Liu, H. Xu, F. Sun, Z. Ma, J. Zou, W. Ding, Chem. Eng. J. 2021, 421, 127851; d) Y. Fu, Z. Yu, S. Guo, Y. Li, Q. Peng, L. Zhang, S. Wu, S. Han, Chem. Eng. J. 2023, 458, 141337; e) M. Liu, S. Zhao, X. Xiao, M. Chen, C. Sun, Z. Yao, Z. Hu, L. Chen, Nano Energy 2019, 61, 540; f) L. Ren, W. Zhu, Q. Zhang, C. Lu, F. Sun, X. Lin, J. Zou, Chem. Eng. J. 2022, 434, 134701.
- 5a) W. Zhu, L. Ren, C. Lu, H. Xu, F. Sun, Z. Ma, J. Zou, ACS Nano 2021, 15, 18494; b) P. Rizo-Acosta, F. Cuevas, M. Latroche, J. Mater. Chem. A 2019, 7, 23064. c) Y. Fan, D. Chen, X. Liu, G. Fan, B. Liu, Int. J. Hydrog. Energy 2019, 44, 29297.
- 6J. Cui, H. Wang, J. Liu, L. Ouyang, Q. Zhang, D. Sun, X. Yao, M. Zhu, J. Mater. Chem. A 2013, 1, 5603.
- 7L.-P. Ma, P. Wang, H.-M. Cheng, Int. J. Hydrog. Energy 2010, 35, 3046.
- 8a) M. Zhang, X. Xiao, B. Luo, M. Liu, M. Chen, L. Chen, J. Energy Chem. 2020, 46, 191; b) M. Chen, X. Xiao, M. Zhang, J. Mao, J. Zheng, M. Liu, X. Wang, L. Chen, Mater. Today Energy 2020, 16, 100411; c) Y. Sun, C. Shen, Q. Lai, W. Liu, D.a-W. Wang, K.-F. Aguey-Zinsou, Energy Storage Mater. 2018, 10, 168; d) J. Zhang, S. Li, Y. Zhu, H. Lin, Y. Liu, Y. Zhang, Z. Ma, L. Li, J. Alloy. Compd. 2017, 715, 329; e) X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, Z. Li, Z. Lin, Energy Environ. Sci. 2017, 10, 402.
- 9C. Zhang, L. Liang, S. Zhao, Z. Wu, S. Wang, D. Yin, Q. Wang, L. Wang, C. Wang, Y. Cheng, Nano Res. 2023, 16, 9426.
- 10Z. Ma, J. Liu, Y. Zhu, Y. Zhao, H. Lin, Y. Zhang, H. Li, J. Zhang, Y. Liu, W. Gao, S. Li, L. Li, J. Alloy. Compd. 2020, 822, 153553.
- 11F.-J. Liu, S. Suda, J. Alloy. Compd. 1995, 231, 742.
- 12H. Zhang, Q. Kong, S. Hu, D. Zhang, H. Chen, C. C. Xu, B. Li, Y. Fan, B. Liu, ACS Sustain. Chem. Eng. 2021, 10, 363.
- 13L. Ren, W. Zhu, Y. Li, X. Lin, H. Xu, F. Sun, C. Lu, J. Zou, Nano-Micro Lett. 2022, 14, 144.
- 14Y. Wang, Y. Zhang, X. Zhu, Y. Liu, Z. Wu, Appl. Catal. B-Environ. 2022, 316, 121610.
- 15J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc. 2014, 136, 8839.
- 16X. Yu, B. Kim, Y. K. Kim, ACS Catal. 2013, 3, 2479.
- 17R. Fu, Z. Wu, Z. Pan, Z. Gao, Z. Li, X. Kong, L. Li, Angew. Chem.-Int. Ed. 2021, 60, 11173.
- 18Q. Wang, X. Yi, Y.u-C. Chen, Y. Xiao, A. Zheng, J. L. Chen, Y.-K. Peng, Angew. Chem.-Int. Ed. 2021, 60, 16149.
- 19K. Homer. E., Anal. Chem. 1957, 29, 1702.
- 20J. H. Sharp, G. W. Brindley, B. N. N. Achar, J. Am. Ceram. Soc. 1966, 49, 379.
- 21N. Lobo, A. Takasaki, K. Mineo, A. Klimkowicz, K. Goc, Int. J. Hydrog. Energy 2019, 44, 29179.
- 22L. Z. Ouyang, Z. J. Cao, H. Wang, J. W. Liu, D. L. Sun, Q. A. Zhang, M. Zhu, J. Alloy. Compd. 2014, 586, 113.
- 23D. Pukazhselvan, N. Nasani, P. Correia, E. Carbó-Argibay, G. Otero-Irurueta, D. G. Stroppa, D. P. Fagg, J. Power Sources 2017, 362, 174.
- 24L.-P. Ma, X.-D. Kang, H.-B. Dai, Y. Liang, Z.-Z. Fang, P.-J. Wang, P. Wang, H.-M. Cheng, Acta Mater. 2009, 57, 2250.
- 25S. A. Pighin, G. Urretavizcaya, F. J. Castro, Int. J. Hydrog. Energy 2015, 40, 4585.
- 26A. Grzech, U. Lafont, P. C. M. M. Magusin, F. M. Mulder, J. Phys. Chem. C. 2012, 116, 26027.