A Room-Temperature Self-Healing Liquid Metal-Infilled Microcapsule Driven by Coaxial Flow Focusing for High-Performance Lithium-Ion Battery Anode
Xirong Lin
National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorAn Chen
National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorChaoyu Yang
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorKai Mu
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorTianli Han
Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002 P. R. China
Search for more papers by this authorCorresponding Author
Ting Si
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jinjin Li
National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jinyun Liu
Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXirong Lin
National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorAn Chen
National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorChaoyu Yang
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorKai Mu
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorTianli Han
Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002 P. R. China
Search for more papers by this authorCorresponding Author
Ting Si
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jinjin Li
National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jinyun Liu
Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Liquid metals have attracted a lot of attention as self-healing materials in many fields. However, their applications in secondary batteries are challenged by electrode failure and side reactions due to the drastic volume changes during the “liquid-solid-liquid” transition. Herein, a simple encapsulated, mass-producible method is developed to prepare room-temperature liquid metal-infilled microcapsules (LMMs) with highly conductive carbon shells as anodes for lithium-ion batteries. Due to the reasonably designed voids in the microcapsule, the liquid metal particles (LMPs) can expand freely without damaging the electrode structure. The LMMs-based anodes exhibit superior capacity of rete-performance and ultra-long cycling stability remaining 413 mAh g−1 after 5000 cycles at 5.0 A g−1. Ex situ X-ray powder diffraction (XRD) patterns and electrochemical impedance spectroscopy (EIS) reveal that the LMMs anode displays a stable alloying/de-alloying mechanism. DFT calculations validate the electronic structure and stability of the room-temperature LMMs system. These findings will bring some new opportunities to develop high-performance battery systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202307071-sup-0001-SuppMat.pdf2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. P. Grey, D. S. Hall, Nat. Commun. 2020, 11, 6279.
- 2Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin, Y. Cui, W. Chen, Chem. Rev. 2022, 122, 16610.
- 3J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167.
- 4L. Yao, C. Ma, L. Sun, D. Zhang, Y. Chen, E. Jin, X. Song, Z. Liang, K.-X. Wang, J. Am. Chem. Soc. 2022, 144, 23534.
- 5A. Manthiram, Nat. Commun. 2020, 11, 1550.
- 6J. Geng, Y. Ni, Z. Zhu, Q. Wu, S. Gao, W. Hua, S. Indris, J. Chen, F. Li, J. Am. Chem. Soc. 2023, 145, 1564.
- 7J. Xu, X. Cai, S. Cai, Y. Shao, C. Hu, S. Lu, S. Ding, Energy Environ. Mater. 2023, 6, 12450.
- 8H. J. Liu, C. Y. Yang, M. C. Han, C. Y. Yu, X. Li, Z. Z. Yu, L. Qu, Angew. Chem., Int. Ed. 2023, 62, 202217458.
- 9W. Zhou, M. Song, P. Liang, X. Li, X. Liu, H. Li, T. Zhang, B. Wang, R. Zhao, Z. Zhao, W. Li, D. Zhao, D. Chao, J. Am. Chem. Soc. 2023, 145, 10880.
- 10J. Sung, N. Kim, J. Ma, J. H. Lee, S. H. Joo, T. Lee, S. Chae, M. Yoon, Y. Lee, J. Hwang, S. K. Kwak, J. Cho, Nat. Energy 2021, 6, 1164.
- 11L. Zhang, X. Xia, Y. Zhong, D. Xie, S. Liu, X. Wang, J. Tu, Adv. Mater. 2018, 30, 1804011.
- 12C. Zhu, R. E. Usiskin, Y. Yu, J. Maier, Science 2017, 358, 6369.
- 13T. Li, Y. Cui, L. Fan, X. Zhou, Y. Ren, V. De Andrade, F. De Carlo, L. Zhu, Appl. Mater. Today 2020, 21, 100802.
- 14Y. Cheng, J. Chen, Y. Chen, X. Ke, J. Li, Y. Yang, Z. Shi, Energy Storage Mater. 2021, 38, 276.
- 15Y. Cheng, Z. Wang, J. Chen, Y. Chen, X. Ke, D. Wu, Q. Zhang, Y. Zhu, X. Yang, M. Gu, Z. Guo, Z. Shi, Angew. Chem., Int. Ed. 2023, 62, 202305723.
- 16X. Wan, T. Mu, B. Shen, Q. Meng, G. Lu, S. Lou, P. Zuo, Y. Ma, C. Du, G. Yin, Nano Energy 2022, 99, 107334.
- 17Y. Li, L. Zhang, H.-Y. Yen, Y. Zhou, G. Jang, S. Yuan, J.-H. Wang, P. Xiong, M. Liu, H. S. Park, W. Li, Nano-Micro Lett. 2023, 15, 63.
- 18M. Shao, N. Wu, T. Chen, X. Han, Y. Shen, W. Zhang, B. Zheng, S. Li, F. Huo, Chin. Chem. Lett. 2023, 34, 107767.
- 19X. Ning, S. Phadke, B. Chung, H. Yin, P. Burke, D. R. Sadoway, J. Power Sources 2015, 275, 370.
- 20H. Li, K. Wang, S. Cheng, K. Jiang, ACS Appl. Mater. Interfaces 2016, 8, 12830.
- 21M. J. Son, Y. Wang, B. Yu, W. F. Yang, G. H. Cheng, W. R. Cui, Z. H. Zhang, Chem. Eng. J. 2022, 450, 138176.
10.1016/j.cej.2022.138176 Google Scholar
- 22J. Gu, Y. Tao, H. Chen, Z. Cao, Y. Zhang, Z. Du, Y. Cui, S. Yang, Adv. Energy Mater. 2022, 12, 2200115.
- 23H. Fu, G. Liu, L. Xiong, M. Wang, J. Lee, R. Ren, W. Yang, J. K. Lee, Adv. Funct. Mater. 2021, 31, 2107062.
- 24C. Wei, L. Tan, Y. Tao, Y. An, Y. Tian, H. Jiang, J. Feng, Y. Qian, Energy Storage Mater. 2021, 34, 12.
- 25X. Guo, Y. Ding, L. Xue, L. Zhang, C. Zhang, J. B. Goodenough, G. Yu, Adv. Funct. Mater. 2018, 28, 1804649.
- 26Y. Wu, L. Huang, X. Huang, X. Guo, D. Liu, D. Zheng, X. Zhang, R. Ren, D. Qu, J. Chen, Energy Environ. Sci. 2017, 10, 1854.
- 27S. Yang, W. Wang, C. Lin, W. Shen, Y. Li, Energy 2019, 185, 202.
- 28Z. Q. Zhu, T. Si, R. X. Xu, Adv. Energy Mater. 2015, 15, 642.
- 29F. Zhong, C. Yang, Q. Wu, S. Wang, L. Cheng, P. Dwivedi, Z. Zhu, T. Si, R. X. Xu, Int. J. Polym. Mater. 2020, 69, 840.
- 30K. Z. Wang, J. Hu, T. Y. Chen, K. J. Wang, J. Wu, W. J. Zhang, Z. S. Deng, Scripta Mater. 2022, 217, 114792.
- 31Y. Qi, C. Shen, Q. Hou, Z. Ren, T. Jin, K. Xie, J. Energy Chem. 2022, 72, 522.
- 32M.-M. Shi, D. Bao, S.-J. Li, B.-R. Wulan, J.-M. Yan, Q. Jiang, Adv. Energy Mater. 2018, 8, 1800124.
- 33J. Liu, Y. Ding, Z. Shen, H. Zhang, T. Han, Y. Guan, Y. Tian, P. V. Braun, Adv. Sci. 2022, 9, 2103517.
- 34A.-Y. Kim, R. E. A. Ardhi, G. Liu, J. Y. Kim, H.-J. Shin, D. Byun, J. K. Lee, Carbon 2019, 153, 62.
- 35C. Wei, H. Fei, Y. Tian, Y. An, G. Zeng, J. Feng, Y. Qian, Small 2019, 15, 1903214.
- 36X. C. Ye, Z. H. Lin, S. J. Liang, X. H. Huang, X. Y. Qiu, Y. C. Qiu, X. M. Liu, D. Xie, H. Deng, X. H. Xiong, Z. Lin, Nano Lett. 2019, 19, 1860.
- 37C. Ding, S. J. Li, X. Q. Zeng, W. Wang, M. Wang, T. Y. Liu, C. Liang, ACS Appl. Mater. Interfaces 2023, 15, 12189.
- 38X. R. Lin, J. Y. Liu, H. K. Zhang, Y. Zhong, M. F. Zhu, T. Zhou, X. Qiao, H. G. Zhang, T. L. Han, J. J. Li, Adv. Sci. 2021, 8, 200229.
- 39X. Lin, C. Yang, T. Han, J. Li, Z. Chen, H. Zhang, K. Mu, T. Si, J. Liu, Lab Chip 2022, 22, 2185.
- 40H. J. Kwon, J.-Y. Hwang, H.-J. Shin, M.-G. Jeong, K. Y. Chung, Y.-K. Sun, H.-G. Jung, Nano Lett. 2020, 20, 625.
- 41Y. Wu, T. Han, X. Huang, X. Lin, Y. Hu, Z. Chen, J. Liu, J. Elecrroanal Chem. 2022, 922, 116789.
- 42J. Zhu, Y. Wu, X. Huang, L. Huang, M. Cao, G. Song, X. Guo, X. Sui, R. Ren, J. Chen, Nano Energy 2019, 62, 883.
- 43Y. L. Zhou, Q. M. Li, Q. Han, L. L. Zhao, Y. Liu, Y. F. Wang, Z. Q. Li, C. F. Dong, X. Q. Sun, J. Yang, X. Y. Zhang, F. Y. Jiang, Small 2023, 19, 2303742.
- 44Z. Zhao, J. Han, F. Chen, J. Xiao, Y. Zhao, Y. Zhang, D. Kong, Z. Weng, S. Wu, Q.-H. Yang, Adv. Energy Mater. 2022, 12, 2103565.
- 45X. Zhang, S. Weng, G. Yang, Y. Li, H. Li, D. Su, L. Gu, Z. Wang, X. Wang, L. Chen, Cell Rep. Phys. Sci. 2021, 2, 100668.
- 46X. Wang, M. Zhang, J. Alvarado, S. Wang, M. Sina, B. Lu, J. Bouwer, W. Xu, J. Xiao, J.-G. Zhang, J. Liu, Y. S. Meng, Nano Lett. 2017, 17, 7606.
- 47X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, Q. Zhang, Adv. Funct. Mater. 2017, 27, 1605989.
- 48J. Liu, Y. Zhong, K. Mu, T. Han, H. Zhang, T. Si, ACS Appl. Energy Mater. 2021, 4, 6749.
- 49M. Tian, L. Ben, H. Yu, Z. Song, Y. Yan, W. Zhao, M. Armand, H. Zhang, Z.-B. Zhou, X. Huang, J. Am. Chem. Soc. 2022, 144, 15100.
- 50J. Liu, L. Zhu, Q. Ding, X. Lin, T. Han, C. Hu, Appl. Surf. Sci. 2023, 620, 156841.
- 51L. Zhang, J. Bi, T. Liu, X. Chu, H. Lv, D. Mu, B. Wu, F. Wu, Energy Storage Mater. 2022, 54, 410.
- 52Y. Y. Yi, H. Ma, X. Y. Lian, Q. Q. Mei, Z. H. Zeng, Y. Zhao, C. Lu, W. Zhao, W. Y. Guo, Z. F. Liu, J. Y. Sun, Infomat 2021, 3, 891.
- 53D. Zhang, Q. Wei, H. Huang, L. Jiang, J. Teng, R. Yu, Q. Zhang, S. Liu, L. Wang, W. Yang, Energy Environ. Mater. 2023, 0, 12585.
10.1002/eem2.12585 Google Scholar
- 54H. Huang, X. Luo, Y. Yao, X. Zhou, Y. Jiang, C. Guo, J. Liu, X. Wu, Y. Yu, Infomat 2021, 3, 421.
- 55Y. Zhang, X. Liu, L. Wu, W. Dong, F. Xia, L. Chen, N. Zhou, L. Xia, Z.-Y. Hu, J. Liu, H. S. H. Mohamed, Y. Li, Y. Zhao, L. Chen, B.-L. Su, J. Mater. Chem. A 2020, 8, 2741.
- 56H. Huang, X. Luo, Y. Yao, X. Zhou, Y. Jiang, C. Guo, J. Liu, X. Wu, Y. Yu, Infomat 2021, 3, 421.
- 57H. N. Zhang, P. Y. Chen, H. Xia, G. Xu, Y. P. Wang, T. F. Zhang, W. W. Sun, M. Turgunov, W. Zhang, Z. M. Sun, Energy Environ. Sci. 2022, 15, 5240.
- 58Z. Jin, Q. Cheng, S. T. Bao, R. Zhang, A. M. Evans, F. Ng, Y. Xu, M. L. Steigerwald, A. E. Mcdermott, Y. Yang, C. Nuckolls, J. Am. Chem. Soc. 2022, 144, 13973.
- 59F. Ye, Q. Liu, C. Lu, F. Meng, T. Lin, H. Dong, L. Gu, Y. Wu, Z. Tang, L. Hu, Energy Storage Mater. 2022, 52, 675.
- 60Y. Wang, Y. Zhang, Y. Peng, H. Li, J. Li, B.-J. Hwang, J. Zhao, Electrochim. Acta 2019, 299, 489.
- 61B. Li, J. Wang, R. Bi, N. Yang, J. Wan, H. Jiang, L. Gu, J. Du, A. Cao, W. Gao, D. Wang, Adv. Mater. 2023, 34, 2205635.
10.1002/adma.202205635 Google Scholar