Hybrid Acid/Base Electrolytic Cell for Hydrogen Generation and Methanol Conversion Implemented by Bifunctional Ni/MoN Nanorod Electrocatalyst
Chaoming Rao
Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 China
Search for more papers by this authorHaijian Wang
Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 China
Search for more papers by this authorKai Chen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorHaiyan Chen
Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 China
Search for more papers by this authorCorresponding Author
Suqin Ci
Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQiuhua Xu
Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 China
Search for more papers by this authorCorresponding Author
Zhenhai Wen
Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 China
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorChaoming Rao
Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 China
Search for more papers by this authorHaijian Wang
Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 China
Search for more papers by this authorKai Chen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorHaiyan Chen
Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 China
Search for more papers by this authorCorresponding Author
Suqin Ci
Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQiuhua Xu
Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 China
Search for more papers by this authorCorresponding Author
Zhenhai Wen
Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 China
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Combining the methanol oxidation reaction (MOR) and hydrogen evolution reaction (HER) within an integrated electrolytic system may offer the advantages of enhanced kinetics of the anode, reduced energy consumption, and the production of high-purity hydrogen. Herein, it is reported the construction of Ni─MoN nanorod arrays supported on a nickel foam substrate (Ni─MoN/NF) as a bifunctional electrocatalyst for electrocatalytic hydrogen production and selective methanol oxidation to formate. Remarkably, The optimal Ni─MoN/NF catalyst displays exceptional HER performance with an overpotential of only 49 mV to attain 10 mA cm−2 in acid, and exhibits a high activity for MOR to achieve 100 mA cm−2 at 1.48 V in alkali. A hybrid acid/base electrolytic cell with Ni─MoN/NF electrode as anode and cathode is further developed for an integrated HER–MOR cell, which only requires a voltage of 0.56 V at 10 mA cm−2, significantly lower than that of the HER–OER system (0.70 V). The density functional theory studies reveal that the incorporation of Ni effectively modulates the electronic structure of MoN, thereby resulting in enhanced catalytic activity. The unique combination of high electrocatalytic activity and excellent stability make the Ni─MoN/NF catalyst a promising candidate for practical applications in electrocatalytic hydrogen production and methanol oxidation.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202303300-sup-0001-SuppMat.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, X. Sun, Adv. Mater. 2016, 28, 215.
- 2J. Zhu, L. Hu, P. Zhao, L. Y. S. Lee, K.-Y. Wong, Chem. Rev. 2020, 120, 851.
- 3H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, Chem. Soc. Rev. 2020, 49, 1414.
- 4X. Liu, J. He, S. Zhao, Y. Liu, Z. Zhao, J. Luo, G. Hu, X. Sun, Y. Ding, Nat. Commun. 2018, 9, 4365.
- 5J.-Y. Zhang, T. He, M. Wang, R. Qi, Y. Yan, Z. Dong, H. Liu, H. Wang, B. Y. Xia, Nano Energy 2019, 60, 894.
- 6Y. Guo, J. Liu, Y.-T. Xu, B. Zhao, X. Wang, X.-Z. Fu, R. Sun, C.-P. Wong, Sci. Bull. 2019, 64, 764.
- 7Y. Xu, M. Liu, S. Wang, K. Ren, M. Wang, Z. Wang, X. Li, L. Wang, H. Wang, Appl. Catal., B 2021, 298, 120493.
- 8B. Zhao, J. Liu, C. Xu, R. Feng, P. Sui, J.-X. Luo, L. Wang, J. Zhang, J.-L. Luo, X.-Z. Fu, Appl. Catal., B 2021, 285, 119800.
- 9K. Xiang, D. Wu, X. Deng, M. Li, S. Chen, P. Hao, X. Guo, J.-L. Luo, X.-Z. Fu, Adv. Funct. Mater. 2020, 30, 1909610.
- 10H. Sun, J.-M. Yang, J.-G. Li, Z. Li, X. Ao, Y.-Z. Liu, Y. Zhang, Y. Li, C. Wang, J. Tang, Appl. Catal., B 2020, 272, 118988.
- 11Z. Zhao, H. Liu, W. Gao, W. Xue, Z. Liu, J. Huang, X. Pan, Y. Huang, J. Am. Chem. Soc. 2018, 140, 9046.
- 12J. Xie, L. Gao, S. Cao, W. Liu, F. Lei, P. Hao, X. Xia, B. Tang, J. Mater. Chem. A 2019, 7, 13577.
- 13L. Zhang, J. Wang, P. Liu, J. Liang, Y. Luo, G. Cui, B. Tang, Q. Liu, X. Yan, H. Hao, M. Liu, R. Gao, X. Sun, Nano Res. 2022, 15, 6084.
- 14M. Li, X. Deng, Y. Liang, K. Xiang, D. Wu, B. Zhao, H. Yang, J. L. Luo, X.-Z. Fu, J Energy Chem 2020, 50, 314.
- 15X. Du, M. Tan, T. Wei, H. Kobayashi, J. Song, Z. Peng, H. Zhu, Z. Jin, R. Li, W. Liu, Chem. Eng. J. 2023, 452, 139404.
- 16J. Chang, L. Feng, C. Liu, W. Xing, X. Hu, Energy Environ. Sci. 2014, 7, 1628.
- 17J. Dong, F.-Q. Zhang, Y. Yang, Y.-B. Zhang, H. He, X. Huang, X. Fan, X.-M. Zhang, Appl. Catal., B 2019, 243, 693.
- 18B. Zhao, J. Liu, X. Wang, C. Xu, P. Sui, R. Feng, L. Wang, J. Zhang, J.-L. Luo, X.-Z. Fu, Nano Energy 2021, 80, 105530.
- 19F. Si, J. Liu, Y. Zhang, B. Zhao, Y. Liang, X. Wu, X. Kang, X. Yang, J. Zhang, X.-Z. Fu, J.-L. Luo, Small 2023, 19, 2205257.
- 20C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A. M. Asiri, X. Sun, Angew. Chem., Int. Ed. 2017, 56, 842.
- 21B. Liu, T. Xiao, X. Sun, H.-Q. Peng, X. Wang, Y. Zhao, W. Zhang, Y.-F. Song, J. Mater. Chem. A 2022, 10, 19649.
- 22G. Fu, X. Kang, Y. Zhang, X. Yang, L. Wang, X.-Z. Fu, J. Zhang, J.-L. Luo, J. Liu, Nano-Micro Lett. 2022, 14, 200.
- 23B. Zhao, C. Xu, M. Shakouri, R. Feng, Y. Zhang, J. Liu, L. Wang, J. Zhang, J.-L. Luo, X.-Z. Fu, Appl. Catal. B 2022, 305, 121082.
- 24X. Peng, S. Xie, X. Wang, C. Pi, Z. Liu, B. Gao, L. Hu, W. Xiao, P. K. Chu, J. Mater. Chem. A 2022, 10, 20761.
- 25Z. Duan, T. Ren, Q. Mao, H. Yu, K. Deng, Y. Xu, Z. Wang, L. Wang, H. Wang, J. Mater. Chem. A 2022, 10, 18126.
- 26T. Wang, L. Miao, S. Zheng, H. Qin, X. Cao, L. Yang, L. Jiao, ACS Catal. 2023, 13, 4091.
- 27Y. Ding, P. Cai, Z. Wen, Chem. Soc. Rev. 2021, 50, 1495.
- 28L. Fan, Y. Ji, G. Wang, J. Chen, K. Chen, X. Liu, Z. Wen, J. Am. Chem. Soc. 2022, 144, 7224.
- 29C. Rao, Z. Zhao, Z. Wen, Q. Xu, K. Chen, T. Zhang, S. Ci, Electrochim. Acta 2022, 431, 141142.
- 30H. Li, S. Chen, Y. Zhang, Q. Zhang, X. Jia, Q. Zhang, L. Gu, X. Sun, L. Song, X. Wang, Nat. Commun. 2018, 9, 2452.
- 31C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu, K. Liu, S. Hu, F. Kang, H. J. Fan, C. Yang, Energy Environ. Sci. 2020, 13, 86.
- 32R. B. Patil, S. D. House, A. Mantri, J. C. Yang, J. R. McKone, ACS Catal. 2020, 10, 10390.
- 33L. Wu, F. Zhang, S. Song, M. Ning, Q. Zhu, J. Zhou, G. Gao, Z. Chen, Q. Zhou, X. Xing, T. Tong, Y. Yao, J. Bao, L. Yu, S. Chen, Z. Ren, Adv. Mater. 2022, 34, 2201774.
- 34P. Wang, J. Qi, C. Li, X. Chen, T. Wang, C. Liang, ChemElectroChem 2020, 7, 745.
- 35H. Yan, Y. Xie, Y. Jiao, A. Wu, C. Tian, X. Zhang, L. Wang, H. Fu, Adv. Mater. 2018, 30, 1704156.
- 36R. Zhang, L. Xu, Z. Wu, L. Wang, J. Zhang, Y. Tang, L. Xu, A. Xie, Y. Chen, H. Zhang, P. Wan, Chem. Eng. J. 2022, 436, 134931.
- 37Y. Hao, D. Yu, S. Zhu, C.-H. Kuo, Y.-M. Chang, L. Wang, H.-Y. Chen, M. Shao, S. Peng, Energy Environ. Sci. 2023, 16, 1100.
- 38Y. Gu, A. Wu, Y. Jiao, H. Zheng, X. Wang, Y. Xie, L. Wang, C. Tian, H. Fu, Angew. Chem., Int. Ed. 2021, 60, 6673.
- 39Y. Gong, L. Wang, H. Xiong, M. Shao, L. Xu, A. Xie, S. Zhuang, Y. Tang, X. Yang, Y. Chen, P. Wan, J. Mater. Chem. A 2019, 7, 13671.
- 40J. Song, Y. Q. Jin, L. Zhang, P. Dong, J. Li, F. Xie, H. Zhang, J. Chen, Y. Jin, H. Meng, X. Sun, Adv. Energy Mater. 2021, 11, 2003511.
- 41G. Solomon, M. A. LandstrÃ, R. Mazzaro, M. Jugovac, P. Moras, E. Cattaruzza, V. Morandi, I. Concina, A. Vomiero, Adv. Energy Mater. 2021, 11, 2101324.
- 42P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, et al., J. Phys.: Condens. Matter 2009, 21, 395502.
- 43J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.