Pseudocapacitive Potassium-Ion Intercalation Enabled by Topologically Defective Soft Carbon toward High-Rate, Large-Areal-Capacity, and Low-Temperature Potassium-Ion Batteries
Haozhen Yang
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
Search for more papers by this authorJunlong Huang
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
Search for more papers by this authorShaohong Liu
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
Search for more papers by this authorYongqi Chen
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
Search for more papers by this authorZongheng Cen
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
Search for more papers by this authorChenguang Shi
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
Search for more papers by this authorYuheng Lu
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
Search for more papers by this authorCorresponding Author
Ruowen Fu
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
E-mail: [email protected]
Search for more papers by this authorHaozhen Yang
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
Search for more papers by this authorJunlong Huang
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
Search for more papers by this authorShaohong Liu
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
Search for more papers by this authorYongqi Chen
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
Search for more papers by this authorZongheng Cen
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
Search for more papers by this authorChenguang Shi
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
Search for more papers by this authorYuheng Lu
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
Search for more papers by this authorCorresponding Author
Ruowen Fu
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Carbonaceous materials are widely investigated as anodes for potassium-ion batteries (PIBs). However, the inferior rate capability, low areal capacity, and limited working temperature caused by sluggish K-ions diffusion kinetics are still primary challenges for carbon-based anodes. Herein, a simple temperature-programmed co-pyrolysis strategy is proposed for the efficient synthesis of topologically defective soft carbon (TDSC) based on inexpensive pitch and melamine. The skeletons of TDSC are optimized with shortened graphite-like microcrystals, enlarged interlayer spacing, and abundant topological defects (e.g., pentagons, heptagons, and octagons), which endow TDSC with fast pseudocapacitive K-ion intercalation behavior. Meanwhile, micrometer-sized structure can reduce the electrolyte degradation over particle surface and avoid unnecessary voids, ensuring a high initial Coulombic efficiency as well as high energy density. These synergistic structural advantages contribute to excellent rate capability (116 mA h g−1 at 20 C), impressive areal capacity (1.83 mA h cm−2 with a mass loading of 8.32 mg cm−2), long-term cycling stability (capacity retention of 91.8% after 1200 h cycling), and low working temperature (−10 °C) of TDSC anodes, demonstrating great potential for the practical application of PIBs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202302537-sup-0001-SuppMat.pdf1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Armand, J.-M. Tarascon, Nature 2008, 451, 652.
- 2W. C. Zhang, Y. J. Liu, Z. P. Guo, Sci. Adv. 2019, 5, 7412.
- 3Y. Wu, H. Zhao, Z. Wu, L. Yue, J. Liang, Q. Liu, Y. Luo, S. Gao, S. Lu, G. Chen, X. Shi, B. Zhong, X. Guo, X. Sun, Energy Storage Mater. 2021, 34, 483.
- 4L. Duan, J. Xu, Y. Xu, R. Tian, Y. Sun, C. Zhu, X. Mo, X. Zhou, J. Energy Chem. 2023, 76, 332.
- 5L. Duan, Y. Xu, Z. Zhang, J. Xu, J. Liao, J. Xu, Y. Sun, Y. He, X. Zhou, J. Mater. Chem. A 2021, 9, 22820.
- 6S. Dhir, S. Wheeler, I. Capone, M. Pasta, Chem 2020, 6, 2442.
- 7R. Rajagopalan, Y. G. Tang, X. B. Ji, C. K. Jia, H. Y. Wang, Adv. Funct. Mater. 2020, 30, 1909486.
- 8K. Lee, M. J. Lee, J. Lim, K. Ryu, M. Li, S. Noda, S. J. Kwon, S. W. Lee, Adv. Funct. Mater. 2022, 33, 2209775.
10.1002/adfm.202209775 Google Scholar
- 9Y. Wang, X. Gao, L. Li, M. Wang, J. Shui, M. Xu, Nano Energy 2020, 67, 104248.
- 10Y. Xu, C. L. Zhang, M. Zhou, Q. Fu, C. X. Zhao, M. H. Wu, Y. Lei, Nat. Commun. 2018, 9, 1720.
- 11X. Shi, Y. Zhang, G. Xu, S. Guo, A. Pan, J. Zhou, S. Liang, Sci. Bull. 2020, 65, 2014.
- 12D. S. Bin, X. J. Lin, Y. G. Sun, Y. S. Xu, K. Zhang, A. M. Cao, L. J. Wan, J. Am. Chem. Soc. 2018, 140, 7127.
- 13Y. Liu, Z. Tai, J. Zhang, W. K. Pang, Q. Zhang, H. Feng, K. Konstantinov, Z. Guo, H. K. Liu, Nat. Commun. 2018, 9, 3645.
- 14Y. Du, Z. Zhang, Y. Xu, J. Bao, X. Zhou, Acta Phys.-Chim. Sin. 2022, 38, 2205017.
- 15Z. Zhang, L. Duan, Y. Xu, C. Zhao, J. Bao, J. Shen, X. Zhou, J. Energy Chem. 2022, 73, 126.
- 16Z. L. Jian, W. Luo, X. L. Ji, J. Am. Chem. Soc. 2015, 137, 11566.
- 17Y. An, H. Fei, G. Zeng, L. Ci, B. Xi, S. Xiong, J. Feng, J. Power Sources 2018, 378, 66.
- 18J. Yang, Y. Zhai, X. Zhang, E. Zhang, H. Wang, X. Liu, F. Xu, S. Kaskel, Adv. Energy Mater. 2021, 11, 2100856.
- 19K. Yu, C. Liu, Y. Wang, H. Zheng, H. Li, X. Zhang, H. Bai, T. Ma, J. Qiu, Carbon 2022, 191, 10.
- 20W. Tan, L. Wang, K. Liu, Z. Lu, F. Yang, G. Luo, Z. Xu, Small 2022, 18, 2203494.
- 21S. Wu, Y. Song, C. Lu, T. Yang, S. Yuan, X. Tian, Z. Liu, Small 2022, 18, 2105275.
- 22Y. Liu, Y. X. Lu, Y. S. Xu, Q. S. Meng, J. C. Gao, Y. G. Sun, Y. S. Hu, B. B. Chang, C. T. Liu, A. M. Cao, Adv. Mater. 2020, 32, 2000505.
- 23N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Nano-Micro Lett. 2022, 14, 146.
- 24Y. Sun, H. Wang, W. Wei, Y. Zheng, L. Tao, Y. Wang, M. Huang, J. Shi, Z. C. Shi, D. Mitlin, ACS Nano 2021, 15, 1652.
- 25H. Huang, R. Xu, Y. Feng, S. Zeng, Y. Jiang, H. Wang, W. Luo, Y. Yu, Adv. Mater. 2020, 32, 1904320.
- 26F. Yuan, D. Zhang, Z. Li, H. Sun, Q. Yu, Q. Wang, J. Zhang, Y. Wu, K. Xi, B. Wang, Small 2022, 18, 2107113.
- 27W. Feng, Y. Cui, W. Liu, H. Wang, Y. Zhang, Y. Du, S. Liu, H. Wang, X. Gao, T. Wang, ACS Nano 2020, 14, 4938.
- 28W. Zhang, J. Yin, M. Sun, W. Wang, C. Chen, M. Altunkaya, A. H. Emwas, Y. Han, U. Schwingenschlogl, H. N. Alshareef, Adv. Mater. 2020, 32, 2000732.
- 29Y. Jiang, Y. Yang, R. Xu, X. Cheng, H. Huang, P. Shi, Y. Yao, H. Yang, D. Li, X. Zhou, Q. Chen, Y. Feng, X. Rui, Y. Yu, ACS Nano 2021, 15, 10217.
- 30C. Liu, H. Zheng, K. Yu, D. Feng, H. Li, J. Yao, X. Zhang, T. Ma, J. Qiu, Carbon 2022, 194, 176.
- 31D. Xu, Q. Cheng, P. Saha, Y. Hu, L. Chen, H. Jiang, C. Li, Adv. Funct. Mater. 2022, 33, 2211661.
- 32Z. Sun, Y. Chen, B. Xi, C. Geng, W. Guo, Q. Zhuang, X. An, J. Liu, Z. Ju, S. Xiong, Energy Storage Mater. 2022, 53, 482.
- 33J. Tu, H. Tong, X. Zeng, S. Chen, C. Wang, W. Zheng, H. Wang, Q. Chen, Adv. Funct. Mater. 2022, 32, 2204991.
- 34X. Zhou, L. Chen, W. Zhang, J. Wang, Z. Liu, S. Zeng, R. Xu, Y. Wu, S. Ye, Y. Feng, X. Cheng, Z. Peng, X. Li, Y. Yu, Nano Lett. 2019, 19, 4965.
- 35F. Yuan, C. Shi, Q. Li, J. Wang, D. Zhang, Q. Wang, H. Wang, Z. Li, W. Wang, B. Wang, Adv. Funct. Mater. 2022, 32, 2208966.
- 36W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang, S. Guo, Adv. Energy Mater. 2018, 8, 1701648.
- 37Y. Wang, N. Xiao, Z. Wang, H. Li, M. Yu, Y. Tang, M. Hao, C. Liu, Y. Zhou, J. Qiu, Chem. Eng. J. 2018, 342, 52.
- 38C. Liu, H. Zheng, Y. Wang, N. Xiao, K. Yu, H. Li, X. Zhang, H. Bai, T. Ma, J. Qiu, J. Colloid Interface Sci. 2022, 615, 485.
- 39W. Zhang, J. Ming, W. Zhao, X. Dong, M. N. Hedhili, P. M. F. J. Costa, H. N. Alshareef, Adv. Funct. Mater. 2019, 29, 1903641.
- 40X. Wang, Y. Jia, X. Mao, L. Zhang, D. Liu, L. Song, X. Yan, J. Chen, D. Yang, J. Zhou, K. Wang, A. Du, X. Yao, Chem 2020, 6, 2009.
- 41Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C. L. Brown, X. Yao, Adv. Mater. 2016, 28, 9532.
- 42J. Wang, Y. Yao, C. Zhang, Q. Sun, D. Cheng, X. Huang, J. Feng, J. Wan, J. Zou, C. Liu, C. Yu, Adv. Sci. 2021, 8, 2100120.
- 43F. Jaouen, F. Charreteur, J. P. Dodelet, J. Electrochem. Soc. 2006, 153, A689.
- 44Y. Dong, S. Zhang, X. Du, S. Hong, S. Zhao, Y. Chen, X. Chen, H. Song, Adv. Funct. Mater. 2019, 29, 1901127.
- 45Y. Dong, X. Lin, D. Wang, R. Yuan, S. Zhang, X. Chen, L. G. Bulusheva, A. V. Okotrub, H. Song, Energy Storage Mater. 2020, 30, 287.
- 46G. Gan, S. Fan, X. Li, J. Wang, C. Bai, X. Guo, M. Tade, S. Liu, ACS Catal. 2021, 11, 14284.
- 47Q. Wu, Y. Jia, Q. Liu, X. Mao, Q. Guo, X. Yan, J. Zhao, F. Liu, A. Du, X. Yao, Chem 2022, 8, 1.
10.1016/j.chempr.2021.12.020 Google Scholar
- 48Y. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou, J. Tian, N. Lin, Y. Qian, Angew. Chem. Int. Ed. 2019, 58, 18108.
- 49Q. Li, Y. Zhang, Z. Chen, J. Zhang, Y. Tao, Q. H. Yang, Adv. Energy Mater. 2022, 12, 2201574.
- 50L. Qin, N. Xiao, J. Zheng, Y. Lei, D. Zhai, Y. Wu, Adv. Energy Mater. 2019, 9, 1902618.
- 51F. Yuan, Z. Li, D. Zhang, Q. Wang, H. Wang, H. Sun, Q. Yu, W. Wang, B. Wang, Adv. Sci. 2022, 9, 2200683.
- 52K.-H. Nam, V. Ganesan, K. H. Chae, C.-M. Park, Carbon 2021, 181, 290.
- 53J. Wang, Z. Xu, J. C. Eloi, M. M. Titirici, S. J. Eichhorn, Adv. Funct. Mater. 2022, 32, 2110862.
- 54L. Zhu, Z. Zhang, J. Luo, H. Zhang, Y. Qu, Z. Yang, Carbon 2021, 174, 317.
- 55Q. Zhang, X. Cheng, C. Wang, A. M. Rao, B. Lu, Energy Environ. Sci. 2021, 14, 965.
- 56J. Xie, J. Li, X. Li, H. Lei, W. Zhuo, X. Li, G. Hong, K. N. Hui, L. Pan, W. Mai, CCS Chem. 2021, 3, 791.
- 57W. L. Zhang, Z. Cao, W. X. Wang, E. Alhajji, A. H. Emwas, P. M. F. J. Costa, L. Cavallo, H. N. Alshareef, Angew. Chem. Int. Ed. 2020, 59, 4448.
- 58F. Xu, Y. X. Zhai, E. Zhang, Q. H. Liu, G. S. Jiang, X. S. Xu, Y. Q. Qiu, X. M. Liu, H. Q. Wang, S. Kaskel, Angew. Chem. Int. Ed. 2020, 59, 19460.
- 59S. Kim, M. Ju, J. Lee, J. Hwang, J. Lee, J. Am. Chem. Soc. 2020, 142, 9250.
- 60J. Chen, B. Yang, H. Li, P. Ma, J. Lang, X. Yan, J. Mater. Chem. A 2019, 7, 9247.
- 61B. Yin, S. Liang, D. Yu, B. Cheng, I. L. Egun, J. Lin, X. Xie, H. Shao, H. He, A. Pan, Adv. Mater. 2021, 33, 2100808.
- 62Y. S. Wang, Z. P. Wang, Y. J. Chen, H. Zhang, M. Yousaf, H. S. Wu, M. C. Zou, A. Y. Cao, R. P. S. Han, Adv. Mater. 2018, 30, 1802074.
- 63T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Nat. Mater. 2010, 9, 146.
- 64Y. Cui, W. Liu, X. Wang, J. Li, Y. Zhang, Y. Du, S. Liu, H. Wang, W. Feng, M. Chen, ACS Nano 2019, 13, 11582.
- 65Y. Chen, B. Xi, M. Huang, L. Shi, S. Huang, N. Guo, D. Li, Z. Ju, S. Xiong, Adv. Mater. 2022, 34, 2108621.
- 66F. Liu, J. Meng, G. Jiang, J. Li, H. Wang, Z. Xiao, R. Yu, L. Mai, J. Wu, Matter 2021, 4, 4006.
- 67K. Wang, N. Li, L. Sun, J. Zhang, X. Liu, ACS Appl. Mater. Interfaces 2020, 12, 37506.
- 68Y. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou, J. Tian, N. Lin, Y. Qian, Energy Storage Mater. 2020, 29, 341.
- 69R. Guo, X. Liu, B. Wen, F. Liu, J. Meng, P. Wu, J. Wu, Q. Li, L. Mai, Nano-Micro Lett. 2020, 12, 148.
- 70Z. Ju, P. Li, G. Ma, Z. Xing, Q. Zhuang, Y. Qian, Energy Storage Mater. 2018, 11, 38.
- 71J. Li, W. Qin, J. Xie, H. Lei, Y. Zhu, W. Huang, X. Xu, Z. Zhao, W. Mai, Nano Energy 2018, 53, 415.
- 72J. L. Yang, Z. C. Ju, Y. Jiang, Z. Xing, B. J. Xi, J. K. Feng, S. L. Xiong, Adv. Mater. 2018, 30, 1700104.
- 73L. Fan, R. Ma, Q. Zhang, X. Jia, B. Lu, Angew. Chem. Int. Ed. 2019, 58, 10500.