Molecular Insertion: A Master Key to Unlock Smart Photoelectric Responses of Covalent Organic Frameworks
Qiao-Qiao Jiang
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorYa-Jie Li
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorQiong Wu
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorCorresponding Author
Ru-Ping Liang
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXun Wang
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorRui Zhang
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorYing-Ao Wang
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorXin Liu
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorCorresponding Author
Jian-Ding Qiu
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang, 330013 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQiao-Qiao Jiang
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorYa-Jie Li
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorQiong Wu
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorCorresponding Author
Ru-Ping Liang
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXun Wang
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorRui Zhang
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorYing-Ao Wang
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorXin Liu
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorCorresponding Author
Jian-Ding Qiu
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031 China
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang, 330013 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Covalent organic frameworks (COFs) show potentials in prominent photoelectric responses by judicious structural design. However, from the selections of monomers and condensation reactions to the synthesis procedures, the acquisition of photoelectric COFs has to meet overmuch high conditions, limiting the breakthrough and modulation in photoelectric responses. Herein, the study reports a creative “lock-key model” based on molecular insertion strategy. A COF with suitable cavity size, TP-TBDA, is used as the host to load guests. Merely through the volatilization of mixed solution, TP-TBDA and guests can be spontaneously assembled via non-covalent interactions (NCIs) to produce molecular-inserted COFs (MI-COFs). The NCIs between TP-TBDA and guests acted as a bridge to facilitate charge transfer in MI-COFs, unlocking the photoelectric responses of TP-TBDA. By exploiting the controllability of NCIs, the MI-COFs can realize the smart modulation of photoelectric responses by simply changing the guest molecule, thus avoiding the arduous selection of monomers and condensation reactions required by conventional COFs. The construction of molecular-inserted COFs circumvents complicated procedures for achieving performance improvement and modulation, providing a promising direction to construct late-model photoelectric responsive materials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202302254-sup-0001-SuppMat.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1O. Ostroverkhova, Chem. Rev. 2016, 116, 13279.
- 2Y. Wen, J. Zhou, Mater. Today 2019, 23, 37.
- 3F. Yang, S. Cheng, X. Zhang, X. Ren, R. Li, H. Dong, W. Hu, Adv. Mater. 2018, 30, 1702415.
- 4A. Podborska, M. Suchecki, K. Mech, M. Marzec, K. Pilarczyk, K. Szacilowski, Nat. Commun. 2020, 11, 854.
- 5J. An, X. Zhao, Y. Zhang, M. Liu, J. Yuan, X. Sun, Z. Zhang, B. Wang, S. Li, D. Li, Adv. Funct. Mater. 2022, 32, 2110119.
- 6W. K. Haug, E. M. Moscarello, E. R. Wolfson, P. L. McGrier, Chem. Soc. Rev. 2020, 49, 839.
- 7X. Ren, G. Liao, Z. Li, H. Qiao, Y. Zhang, X. Yu, B. Wang, H. Tan, L. Shi, X. Qi, H. Zhang, Coord. Chem. Rev. 2021, 435, 213781.
- 8N. Keller, T. Bein, Chem. Soc. Rev. 2021, 50, 1813.
- 9S. Haldar, D. Chakraborty, B. Roy, G. Banappanavar, K. Rinku, D. Mullangi, P. Hazra, D. Kabra, R. Vaidhyanathan, J. Am. Chem. Soc. 2018, 140, 13367.
- 10G. A. Leith, A. A. Berseneva, A. Mathur, K. C. Park, N. B. Shustova, Trends Chem. 2020, 2, 367.
- 11E. Jin, J. Li, K. Geng, Q. Jiang, H. Xu, Q. Xu, D. Jiang, Nat. Commun. 2018, 9, 4143.
- 12R. K. Sharma, P. Yadav, M. Yadav, R. Gupta, P. Rana, A. Srivastava, R. Zboril, R. S. Varma, M. Antonietti, M. B. Gawande, Mater. Horiz. 2020, 7, 411.
- 13Y. Li, W. Chen, G. Xing, D. Jiang, L. Chen, Chem. Soc. Rev. 2020, 49, 2852.
- 14S. Tan, K. Wang, Q. Zeng, Y. Liu, ACS Appl. Mater. Interfaces 2022, 14, 40173.
- 15Z. Li, T. He, Y. Gong, D. Jiang, Acc. Chem. Res. 2020, 53, 1672.
- 16X. Chen, K. Geng, R. Liu, K. Tan, Y. Gong, Z. Li, S. Tao, Q. Jiang, D. Jiang, Angew. Chem. 2020, 59, 5050.
- 17M. S. Lohse, T. Bein, Adv. Funct. Mater. 2018, 28, 1705553.
- 18S.-Y. Jiang, S.-X. Gan, X. Zhang, H. Li, Q.-Y. Qi, F.-Z. Cui, J. Lu, X. Zhao, J. Am. Chem. Soc. 2019, 141, 14981.
- 19Y. Yue, H. Li, H. Chen, N. Huang, J. Am. Chem. Soc. 2022, 144, 2873.
- 20D. E. Koshland, Proc. Natl. Acad. Sci. USA 1958, 44, 98.
- 21D. Li, F. Lu, J. Wang, W. Hu, X.-M. Cao, X. Ma, H. Tian, J. Am. Chem. Soc. 2018, 140, 1916.
- 22X. Yan, H. Peng, Y. Xiang, J. Wang, L. Yu, Y. Tao, H. Li, W. Huang, R. Chen, Small 2022, 18, 2104073.
- 23Z. Duan, F. Xu, X. Huang, Y. Qian, H. Li, W. Tian, Macromol. Rapid. Commun. 2022, 43, 2100775.
- 24D.-S. Guo, Y. Liu, Chem. Soc. Rev. 2012, 41, 5907.
- 25J. Ding, S. Liu, H.-M. Xiao, T.-T. Ye, P. Zhou, Y.-Q. Feng, Anal. Chim. Acta 2017, 987, 56.
- 26L. E. Khalil-Cruz, P. Liu, F. Huang, N. M Khashab, ACS Appl. Mater. Interfaces 2021, 13, 31337.
- 27R. Gao, L. Chen, K. Chen, Z. Tao, X. Xiao, Coord. Chem. Rev. 2017, 348, 1.
- 28Z.-Y. Zhang, C. Li, Acc. Chem. Res. 2022, 55, 916.
- 29T. Yang, C. Tian, X. Yan, R. Xiao, Z. Lin, Environ. Sci.: Nano 2021, 8, 1469.
- 30X. Li, C. Zhang, S. Cai, X. Lei, V. Altoe, F. Hong, J. J. Urban, J. Ciston, E. M. Chan, Y. Liu, Nat. Commun. 2018, 9, 2998.
- 31Z. Li, N. Huang, K. Lee, Y. Feng, S. Tao, Q. Jiang, Y. Nagao, S. Irle, D. Jiang, J. Am. Chem. Soc. 2018, 140, 12374.
- 32X. Zhang, Y. Zhu, A. Bruck, L. Housel, L. Wang, C. Quilty, K. Takeuchi, E. Takeuchi, A. Marschilok, G. Yu, Energy Storage Mater. 2019, 19, 439.
- 33M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh, P. Knochel, T. Bein, Angew. Chem., Int. Ed. 2013, 52, 2920.
- 34Y. Huang, Y. Zhang, J. Sun, X. Wang, J. Sun, Q. Chen, C. Pan, H. Zhou, Adv. Mater. Interfaces 2018, 5, 1800224.
- 35F. Li, L. Cheng, J. Fan, Q. Xiang, J. Mater. Chem. 2021, 9, 23765.
- 36M. Wang, M. Wang, H.-H. Lin, M. Ballabio, H. Zhong, M. Bonn, S. Zhou, T. Heine, E. Canovas, R. Dong, X. Feng, J. Am. Chem. Soc. 2020, 142, 21622.
- 37S. Wei, F. Zhang, W. Zhang, P. Qiang, K. Yu, X. Fu, D. Wu, S. Bi, F. Zhang, J. Am. Chem. Soc. 2019, 141, 14272.
- 38W.-R. Cui, Y.-J. Li, Q.-Q. Jiang, Q. Wu, Q.-X. Luo, L. Zhang, R.-P. Liang, J.-D. Qiu, Anal. Chem. 2021, 93, 16149.
- 39J. I. Kim, I.-S. Shin, H. Kim, J.-K. Lee, J. Am. Chem. Soc. 2005, 127, 1614.
- 40Y. Shao, M. F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R. B. Kaner, Chem. Rev. 2018, 118, 9233.
- 41S. Haldar, D. Rase, P. Shekhar, C. Jain, C. P. Vinod, E. Zhang, L. Shupletsov, S. Kaskel, R. Vaidhyanathan, Adv. Energy Mater. 2022, 12, 2200754.
- 42Y.-J. Li, W.-R. Cui, Q.-Q. Jiang, R.-P. Liang, X.-J. Li, Q. Wu, Q.-X. Luo, J. Liu, J.-D. Qiu, ACS Appl. Mater. Interfaces 2021, 13, 47921.
- 43W.-R. Cui, C.-R. Zhang, R.-H. Xu, X.-R. Chen, W. Jiang, Y.-J. Li, R.-P. Liang, L. Zhang, J.-D. Qiu, Appl. Catal., B 2021, 294, 120250.
- 44L. He, L. Chen, X. Dong, S. Zhang, M. Zhang, X. Dai, X. Liu, P. Lin, K. Li, C. Chen, T. Pan, F. Ma, J. Chen, M. Yuan, Y. Zhang, L. Chen, R. Zhou, Y. Han, Z. Chai, S. Wang, Chem 2021, 7, 699.
- 45Q.-M. Sun, J.-J. Xu, F.-F. Tao, W. Ye, C. Zhou, J.-H. He, J.-M. Lu, Angew. Chem., Int. Ed. 2022, 61, e202200872.
- 46Y. J. Li, W. R. Cui, Q. Q. Jiang, Q. Wu, R. P. Liang, Q. X. Luo, J. D. Qiu, Nat. Commun. 2021, 12, 4735.
- 47C. Li, Y. Guo, M. Zhao, Y. Pan, B. Yang, Comput. Theor. Chem. 2021, 1200, 113247.
- 48L.-S. Cui, A. J. Gillett, S.-F. Zhang, H. Ye, Y. Liu, X.-K. Chen, Z.-S. Lin, E. W. Evans, W. K. Myers, T. K. Ronson, H. Nakanotani, S. Reineke, J.-L. Bredas, C. Adachi, R. H. Friend, Nat. Photonics 2020, 14, 636.
- 49H. Lin, Y. Liu, Z. Wang, L. Ling, H. Huang, Q. Li, L. Cheng, Y. Li, J. Zhou, K. Wu, J. Zhang, T. Zhou, Angew. Chem., Int. Ed. 2022, 61, e202214142.
- 50Q. Pan, M. Abdellah, Y. Cao, W. Lin, Y. Liu, J. Meng, Q. Zhou, Q. Zhao, X. Yan, Z. Li, H. Cui, H. Cao, W. Fang, D. Tanner, M. Abdel-Hafiez, Y, Z., T. Pullerits, S. E. Canton, H. Xu, K. Zheng, Nat. Commun. 2022, 13, 845.
- 51W.-R. Cui, F.-F. Li, R.-H. Xu, C.-R. Zhang, X.-R. Chen, R.-H. Yan, R.-P. Liang, J.-D. Qiu, Angew. Chem., Int. Ed. 2020, 59, 17684.
- 52C.-R. Zhang, W.-R. Cui, C.-P. Niu, S.-M. Yi, R.-P. Liang, J.-X. Qi, X.-J. Chen, W. Jiang, L. Zhang, J.-D. Qiu, Chem. Eng. J. 2022, 428, 131178.
- 53Y. Liu, H. Pang, X. Wang, S. Yu, Z. Chen, P. Zhang, L. Chen, G. Song, N. Saleh Alharbi, S. O. Rabah, X. Wang, Chem. Eng. J. 2021, 406, 127139.