Emerging Porous Two-Dimensional Materials: Current Status, Existing Challenges, and Applications
Baocai Zhao
College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorJianye Fu
College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266555 China
Search for more papers by this authorCorresponding Author
Chuanli Zhou
Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Liangmin Yu
College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Meng Qiu
College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorBaocai Zhao
College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorJianye Fu
College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266555 China
Search for more papers by this authorCorresponding Author
Chuanli Zhou
Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Liangmin Yu
College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Meng Qiu
College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Two-Dimensional (2D) materials have attracted immense attention in recent years. These materials have found their applications in various fields, such as catalysis, adsorption, energy storage, and sensing, as they exhibit excellent physical, chemical, electronic, photonic, and biological properties. Recently, researchers have focused on constructing porous structures on 2D materials. Various strategies, such as chemical etching and template-based methods, for the development of surface pores are reported, and the porous 2D materials fabricated over the years are used to develop supercapacitors and energy storage devices. Moreover, the lattice structure of the 2D materials can be modulated during the construction of porous structures to develop 2D materials that can be used in various fields such as lattice defects in 2D nanomaterials for enhancing biomedical performances. This review focuses on the recently developed chemical etching, solvent thermal synthesis, microwave combustion, and template methods that are used to fabricate porous 2D materials. The application prospects of the porous 2D materials are summarized. Finally, the key scientific challenges associated with developing porous 2D materials are presented to provide a platform for developing porous 2D materials.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1M. Acerce, D. Voiry, M. Chhowalla, Nat. Nanotechnol. 2015, 10, 313.
- 2R. Ma, T. Sasaki, Chem. Res. 2015, 48, 136.
- 3M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi, Stem Cells Int. 2013, 341, 1502.
- 4M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett. 2008, 8, 3498.
- 5X. Peng, L. Peng, C. Wu, Y. Xie, Chem. Soc. Rev. 2014, 45, 3303.
10.1039/c3cs60407a Google Scholar
- 6K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, A. A. Firsov, Nat. Mater. 2004, 6, 666.
- 7N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li, D. Wang, ACS Nano 2013, 7, 1504.
- 8H. Liu, Y. Du, Y. Deng, P. D. Ye, Chem. Soc. Rev. 2015, 46, 2732.
- 9M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang, Nat. Chem. 2013, 5, 263.
- 10Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Chem. Soc. Rev. 2016, 45, 3989.
- 11J. Zhang, Y. Chen, X. Wang, Stem Cells Int. 2015, 8, 3092.
- 12P. Chen, Z. Zhang, X. Duan, X. Duan, Chem. Soc. Rev. 2018, 47, 3129.
- 13S. Zhu, C. Wang, H. Shou, P. J. Zhang, P. Wan, X. Guo, Z. Yu, W. J. Wang, S. M. Chen, W. S. Chu, L. Song, Adv. Mater. 2022, 34, 2108809.
- 14L. H. Yu, Z. D. Fan, Y. L. Shao, Z. N. Tian, J. Y. Sun, Z. F. Liu, Adv. Energy Mater. 2019, 9, 1901839.
- 15S. Thurakkal, X. Y. Zhang, Adv. Sci. 2020, 7, 1902359.
- 16T. Liu, J. Ding, Z. Su, G. Wei, Mater. Today Energy 2017, 6, 79.
- 17K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197.
- 18L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, Stem Cells Int. 2013, 340, 1311.
- 19F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris, Nat. Nanotechnol. 2009, 4, 839.
- 20J. Yin, H. Wang, H. Peng, Z. Tan, L. Liao, L. Lin, X. Sun, A. L. Koh, Y. Chen, H. Peng, Nat. Commun. 2016, 7, 10699.
- 21K. J. Koski, Y. Cui, ACS Nano 2013, 7, 3739.
- 22C. Pu, J. Wan, E. Liu, Y. Yin, J. Li, Y. Ma, J. Fan, X. Hu, Appl. Surf. Sci. 2017, 399, 139.
- 23F. Schueth, Annu. Rev. Mater. 2005, 35, 209.
- 24A. Vu, Y. Qian, A. Stein, Adv. Energy Mater. 2012, 2, 1056.
- 25L. Peng, Z. Fang, Y. Zhu, C. Yan, G. Yu, Adv. Energy Mater. 2018, 8, 1702179.
- 26J. Wu, J. Peng, Z. Yu, Y. Zhou, Y. Guo, Z. Li, Y. Lin, K. Ruan, C. Wu, Y. Xie, J. Am. Chem. Soc. 2017, 140, 493.
- 27C. Zhang, B. Wang, X. Shen, J. Liu, X. Kong, S. S. C. Chuang, D. Yang, A. Dong, Z. Peng, Nano Energy 2016, 30, 503.
- 28H. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschlogl, H. N. Alshareef, Nano Lett. 2016, 16, 7718.
- 29D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Chem. Rev. 2012, 112, 3959.
- 30X. Liu, H. Pang, X. Liu, Q. Li, N. Zhang, L. Mao, M. Qiu, B. Hu, H. Yang, X. Wang, Innovation 2021, 2, 100076.
- 31H. Jiang, Q. Xu, Chem. Commun. 2011, 47, 3351.
- 32A. J. Mannix, B. Kiraly, M. C. Hersam, N. P. Guisinger, Nat. Rev. Chem. 2017, 1, 0014.
- 33L. Tang, J. Tan, H. Nong, B. Liu, H.-M. Cheng, Acc. Mater. Res. 2021, 2, 36.
- 34J. Liu, N. P. Wickramaratne, S. Z. Qiao, M. Jaroniec, Nat. Mater. 2015, 14, 763.
- 35T. N. Tran, H. Y. Lee, J. D. Park, T. H. Kang, J. S. Yu, ACS Appl. Energy Mater. 2020, 3, 6310.
- 36H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang, S. Jin, Chem. Mater. 2015, 27, 5702.
- 37L. Gao, G. Zhang, J. Cai, L. Huang, J. Zhou, L. Zhang, Nano Res. 2020, 13, 1604.
- 38Y. Cao, L. Ding, Z. Qiu, H. Zhang, Catal. Commun. 2020, 143, 106048.
- 39G. Ren, B. Huang, C. Li, C. Lin, Y. Qian, J. Electroanal. Chem. 2020, 877, 114732.
- 40Y. Huo, Y. Yang, K. Dai, J. Zhang, Appl. Surf. Sci. 2019, 481, 1260.
- 41J. Wang, Z. Chang, B. Ding, T. Li, G. Yang, Z. Pang, T. Nakato, M. Eguchi, Y. M. Kang, J. Na, B. Y. Guan, Y. Yamauchi, Angew. Chem., Int. Ed. 2020, 132, 19738.
10.1002/ange.202007063 Google Scholar
- 42Y. Fang, Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng, D. Zhao, J. Am. Chem. Soc. 2013, 135, 1524.
- 43J. He, L. Chen, Z. Q. Yi, D. Ding, C. T. Au, S. F. Yin, Catal. Commun. 2017, 99, 79.
- 44J. Wan, L. Huang, J. Wu, L. Xiong, Z. Hu, H. Yu, T. Li, J. Zhou, Adv. Funct. Mater. 2018, 28, 1800382.
- 45M. M. Phiri, M. J. Phiri, K. Formela, S. P. Hlangothi, Composites, Part B 2020, 204, 108429.
- 46C. E. Ren, M. Q. Zhao, T. Makaryan, J. Halim, M. Boota, S. Kota, B. Anasori, M. W. Barsoum, Y. Gogotsi, ChemElectroChem 2016, 3, 689.
- 47M. Zhang, R. Liang, N. Yang, N. Yang, R. Gao, Y. Zheng, Y. P. Deng, Y. Hu, A. Yu, Z. Chen, Adv. Energy Mater. 2022, 12, 2102493.
- 48N. Zhang, T. Wang, J. Polym. Sci. 2020, 58, 3387.
- 49G. C. Papanicolaou, D. V. Portan, in Structural Integrity and Durability of Advanced Composites, Woodhead Publishing, United Kingdom, 2015, pp. 735–761.
10.1016/B978-0-08-100137-0.00027-4 Google Scholar
- 50L. He, X. Q. Zhang, A. H. Lu, Acta Phys. Chim. Sin. 2017, 33, 709.
- 51L. Tang, S. Yang, D. Liu, C. Wang, Y. Ge, L. Tang, R. Zhou, H. Zhang, J. Mater. Chem. A 2020, 8, 14356.
- 52H. Li, J. Hou, T. D. Bennett, J. Liu, Y. Zhang, J. Mater. Chem. A 2019, 7, 5811.
- 53B. Wang, J. Shang, C. Guo, J. Zhang, F. Zhu, A. Han, J. Liu, Small 2019, 15, 1804761.
- 54R. Liang, S. Jiang, A. R., X. Zhao, Chem. Soc. Rev. 2020, 49, 3920.
- 55S. D. Diwakara, W. S. Y. Ong, Y. H. Wijesundara, R. L. Gearhart, F. C. Herbert, S. G. Fisher, G. T. McCandless, S. B. Alahakoon, J. J. Gassensmith, S. C. Dodani, R. A. Smaldone, J. Am. Chem. Soc. 2022, 144, 2468.
- 56A. Latypov, T. H. Coskun, in Directed Self-Assembly of Block Co-Polymers for Nano-Manufacturing, Woodhead Publishing, United Kingdom, 2015, 235–255.
10.1016/B978-0-08-100250-6.00009-2 Google Scholar
- 57X. Xie, M.-Q. Zhao, B. Anasori, K. Maleski, C. E. Ren, J. Li, B. W. Byles, E. Pomerantseva, G. Wang, Y. Gogotsi, Nano Energy 2016, 26, 513.
- 58F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini, Nat. Nanotechnol. 2014, 9, 780.
- 59C. H. Liu, Y. C. Chang, T. B. Norris, Z. Zhong, Nat. Nanotechnol. 2014, 9, 273.
- 60X. Han, M. R. Funk, F. Shen, Y.-C. Chen, Y. Li, C. J. Campbell, J. Dai, X. Yang, J.-W. Kim, Y. Liao, ACS Nano 2014, 8, 8255.
- 61T. H. Han, Y.-K. Huang, A. T. Tan, V. P. Dravid, J. Huang, J. Am. Chem. Soc. 2011, 133, 15264.
- 62Y. Zhu, S. Murali, M. D. Stoller, K. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Stem Cells Int. 2011, 332, 1537.
- 63X. Zhao, C. M. Hayner, M. C. Kung, H. H. Kung, ACS Nano 2011, 5, 8739.
- 64O. Akhavan, ACS Nano 2010, 4, 4174.
- 65O. Akhavan, E. Ghaderi, Small 2013, 9, 3593.
- 66H. Liu, X. Cai, X. Zhi, S. Di, B. Zhai, H. Li, S. Wang, L. Li, Nano-Micro Lett. 2023, 15, 24.
10.1007/s40820-022-00987-2 Google Scholar
- 67Y. J. Zhu, Z. J. Yang, Z. J. Pan, Y. Hao, C. J. Wang, Z. L. Dong, Q. G. Li, Y. K. Han, L. L. Tian, L. Z. Feng, Z. Liu, Sci. Adv. 2022, 8, eabo5285.
- 68A. Manikandan, L. J. Kennedy, M. Bououdina, J. J. Vijaya, J. Magn. Magn. Mater. 2014, 349, 249.
- 69R. Liu, Y. Wang, X. Wu, Microporous Mesoporous Mater. 2020, 295, 109954.
- 70L. Fang, H. Zhang, Y. Zhang, L. Liu, Y. Wang, J. Power Sources 2016, 312, 101.
- 71F. Wen, H. Hou, J. Xiang, X. Zhang, Z. Su, S. Yuan, Z. Liu, Carbon 2015, 89, 372.
- 72Q. Guo, N. Chen, L. Qu, Adv. Carbon Energy 2020, 2, 54.
10.1002/cey2.34 Google Scholar
- 73L. L. Zhang, X. Zhao, M. D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger, R. S. Ruoff, Nano Lett. 2012, 12, 1806.
- 74Y. Xu, C. Y. Chen, Z. Zhao, Z. Lin, C. Lee, X. Xu, C. Wang, Y. Huang, M. I. Shakir, X. Duan, Nano Lett. 2015, 15, 4605.
- 75X. Luo, Y. Chen, Y. Mo, New Carbon Mater. 2021, 36, 49.
- 76L. Mao, X. Zhao, H. Wang, H. Xu, L. Xie, C. Zhao, L. Chen, Chem. Rec. 2020, 20, 922.
- 77L. Peng, Y. Zhu, D. Chen, R. S. Ruoff, G. Yu, Adv. Energy Mater. 2016, 6, 1600025.
- 78R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater. 2015, 14, 271.
- 79Y. Wang, H. Li, S. Chen, B. Zhai, S. Di, G. Gao, S. Lee, S. Chun, S. Wang, L. Li, Sci. Bull. 2022, 67, 2085.
- 80M. H. Han, E. Gonzalo, G. Singh, T. Rojo, Energy Environ. Sci. 2015, 8, 81.
- 81J. Huang, Y. Chen, K. Leng, S. Liu, Z. Chen, L. Chen, D. Wu, R. Fu, Chem. Mater. 2020, 32, 8971.
- 82X. Mu, Y. Li, X. Liu, C. Ma, H. Jiang, J. Zhu, X. Chen, T. Tang, E. Mijowska, Nanomaterials 2020, 10, 1097.
- 83G. Y. Li, D. P. Dong, G. Hong, L. F. Yan, X. T. Zhang, W. H. Song, Adv. Mater. 2019, 281, 486.
- 84D. D. Liu, T. Li, D. F. Yan, Y. Q. Zou, S. Y. Wang, ChemElectroChem 2018, 5, 1775.
- 85H. Tan, Y. Zhao, W. Xia, J. Zhao, J. Tang, Chem. Mater. 2020, 32, 4248.
- 86L. Cui, X. Han, F. Wang, H. Zhao, Y. Du, J. Mater. Sci. 2021, 56, 10782.
- 87H. Zhao, Y. Cheng, Z. Zhang, B. Zhang, C. Pei, F. Fan, G. Ji, Carbon 2021, 173, 501.
- 88F. Y. Mo, Z. Y. Ma, T. T. Wu, M. L. Liu, Y. Y. Zhang, H. T. Li, S. Z. Yao, Sens. Actuators, B 2019, 281, 486.
- 89K. Yang, J. Li, L. Zhou, T. Zhang, L. Fu, FlatChem 2019, 15, 100109.
- 90R. M. C. Clemmer, S. F. Corbin, Solid State Ionics 2009, 180, 721.
- 91H. Wang, X. Liu, P. Niu, S. Wang, J. Shi, L. Li, Matter 2020, 2, 1377.
- 92C. Liu, X. Yan, F. Hu, G. Gao, G. Wu, X. Yang, Adv. Mater. 2018, 30, 1705713.