Solar-Driven Production Of Hydrogen Peroxide And Benzaldehyde In Two-Phase System By An Interface-Engineered Co9S8-CoZnIn2S4 Heterostructure
Linqian Li
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Contribution: Conceptualization (lead), Data curation (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorXiaobing Huo
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Contribution: Conceptualization (equal), Data curation (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorShipeng Chen
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Contribution: Investigation (supporting)
Search for more papers by this authorCorresponding Author
Qiang Luo
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
E-mail: [email protected]; [email protected]
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorWei Wang
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Contribution: Formal analysis (supporting)
Search for more papers by this authorYifan Wang
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Contribution: Visualization (supporting)
Search for more papers by this authorCorresponding Author
Ning Wang
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
E-mail: [email protected]; [email protected]
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorLinqian Li
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Contribution: Conceptualization (lead), Data curation (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorXiaobing Huo
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Contribution: Conceptualization (equal), Data curation (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorShipeng Chen
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Contribution: Investigation (supporting)
Search for more papers by this authorCorresponding Author
Qiang Luo
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
E-mail: [email protected]; [email protected]
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorWei Wang
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Contribution: Formal analysis (supporting)
Search for more papers by this authorYifan Wang
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Contribution: Visualization (supporting)
Search for more papers by this authorCorresponding Author
Ning Wang
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
E-mail: [email protected]; [email protected]
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorAbstract
Coupling the photoproduction of solar fuel and value-added chemicals is highly attractive, as it maximizes the utilization of incident sunlight and the economic value of photocatalytic reactions. Constructing intimate semiconductor heterojunction for these reactions is highly desirable due to accelerated charge separation at the interfacial contact, but is challenged by material synthesis. Here, an active heterostructure bearing intimate interface, consisting of discrete Co9S8 nanoparticles anchored on cobalt doped ZnIn2S4 using a facile in situ one-step strategy, can drive photocatalytic co-production of H2O2 and benzaldehyde from a two-phase water/benzyl alcohol system with spatial product separation is reported. The heterostructure yields a high production amount of 49.5 and 55.8 mmol L−1 for H2O2 and benzaldehyde under visible-light soaking, respectively. The synchronous elemental Co doping and intimate heterostructure establishment substantially improve the overall reaction kinetics. Mechanism studies reveal that H2O2 generated in the aqueous phase undergoes photodecomposition forming hydroxyl radical, which is subsequently transferred into the organic phase to oxidize benzyl alcohol into benzaldehyde. This study offers fertile guidelines for creating integrated semiconductors and broadens the avenue toward the coupled production of solar fuels and industrially important chemicals.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202301865-sup-0001-SuppMat.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Shibata, T. Suenobu, S. Fukuzumi, Angew. Chem., Int. Ed. 2013, 52, 12327.
- 2R. Li, D. Speed, D. Siriwardena, S. Fernando, S. M. Thagard, T. M. Holsen, Chem. Eng. J. 2021, 425, 131785.
- 3J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem., Int. Ed. 2006, 45, 6962.
- 4Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu, T. F. Jaramillo, J. K. Norskov, Y. Cui, Nat. Catal. 2018, 1, 156.
- 5Q. Luo, Y. Li, X. Huo, L. Li, Y. Song, S. Chen, H. Lin, N. Wang, Adv. Sci. 2022, 9, 2105346.
- 6L. Han, S. Guo, P. Wang, S. Dong, Adv. Energy Mater. 2015, 5, 1400424.
- 7S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida, B. Wickman, M. Escudero-Escribano, E. A. Paoli, R. Frydendal, T. W. Hansen, I. Chorkendorff, I. E. L. Stephens, J. Rossmeisl, Nat. Mater. 2013, 12, 1137.
- 8W. Wang, Q. Luo, J. Li, Y. Li, L. Li, X. Huo, X. Du, N. Wang, Inorg. Chem. Front. 2023, 10, 1907.
- 9Z. Teng, Q. Zhang, H. Yang, K. Kato, W. Yang, Y. Lu, S. Liu, C. Wang, A. Yamakata, C. Su, B. Liu, T. Ohno, Nat. Catal. 2021, 4, 374.
- 10S. C. Perry, D. Pangotra, L. Vieira, L. I. Csepei, V. Sieber, L. Wang, C. Ponce de León, F. C. Walsh, Nat. Rev. Chem. 2019, 3, 442.
- 11G. H. Han, S. H. Lee, S. Y. Hwang, K. Y. Lee, Adv. Energy Mater. 2021, 11, 2003121.
- 12H. Cheng, H. Lv, J. Cheng, L. Wang, X. Wu, H. Xu, Adv. Mater. 2022, 34, 2107480.
- 13J. Baek, Q. Jin, N. S. Johnson, Y. Jiang, R. Ning, A. Mehta, S. Siahrostami, X. Zheng, Nat. Commun. 2022, 13, 7256.
- 14Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji, Y. Kitagawa, S. Tanaka, S. Ichikawa, T. Hirai, Nat. Mater. 2019, 18, 985.
- 15Q. Wu, J. Cao, X. Wang, Y. Liu, Y. Zhao, H. Wang, Y. Liu, H. Huang, F. Liao, M. Shao, Z. Kang, Nat. Commun. 2021, 12, 483.
- 16J. Tang, T. Zhao, D. Solanki, X. Miao, W. Zhou, S. Hu, Joule 2021, 5, 1432.
- 17H. L. Tan, F. F. Abdi, Y. H. Ng, Chem. Soc. Rev. 2019, 4, 1255.
- 18M. Gu, Y. Yang, L. Zhang, B. Zhu, G. Liang, J. Yu, Appl. Catal., B 2023, 324, 122227.
- 19S. Thakur, T. Kshetri, N. H. Kim, J. H. Lee, J. Catal. 2017, 345, 78.
- 20D. A. Giannakoudakis, A. Qayyum, M. Barczak, R. F. Colmenares-Quintero, P. Borowski, K. Triantafyllidis, J. C. Colmenares, Appl. Catal., B 2023, 320, 121939.
- 21X. Sun, D. Jiang, L. Zhang, W. Wang, Appl. Catal., B 2018, 220, 553.
- 22Y. Su, Z. Han, L. Zhang, W. Wang, M. Duan, X. Li, Y. Zheng, Y. Wang, X. Lei, Appl. Catal., B 2017, 217, 108.
- 23N. A. Noureldin, D. G. Lee, J. Org. Chem. 1982, 47, 2790.
- 24H. Guo, M. Kemell, A. Al Hunaiti, S. Rautiainen, M. Leskelä, T. Repo, Catal. Commun. 2011, 12, 1260.
- 25Y. Isaka, Y. Kawase, Y. Kuwahara, K. Mori, H. Yamashita, Angew. Chem., Int. Ed. 2019, 58, 5402.
- 26X. Bao, H. Li, Z. Wang, F. Tong, M. Liu, Z. Zheng, P. Wang, H. Cheng, Y. Liu, Y. Dai, Y. Fan, Z. Li, B. Huang, Appl. Catal., B 2021, 286, 119885.
- 27G. Zuo, Y. Wang, W. L. Teo, A. Xie, Y. Guo, Y. Dai, W. Zhou, D. Jana, Q. Xian, W. Dong, Y. Zhao, Angew. Chem., Int. Ed. 2020, 59, 11287.
- 28Y. Zhang, Y. Wu, L. Wan, H. Ding, H. Li, X. Wang, W. Zhang, Appl. Catal., B 2022, 311, 121255.
- 29W. Xu, W. Gao, L. Meng, W. Tian, L. Li, Adv. Energy Mater. 2021, 11, 2101181.
- 30X. Wang, X. Wang, J. Huang, S. Li, A. Meng, Z. Li, Nat. Commun. 2021, 12, 4112.
- 31J. Wang, C. Guo, Y. Jiang, J. Wan, B. Zheng, Y. Li, B. Jiang, Sci. China Mater. 2022, 28, 181.
- 32Z. Hou, Z. Sun, C. Cui, D. Zhu, Y. Yang, T. Zhang, Adv. Funct. Mater. 2022, 32, 2110572.
- 33B. Wang, Z. Deng, X. Fu, C. Xu, Z. Li, Appl. Catal., B 2018, 237, 970.
- 34Z. Guan, Z. Xu, Q. Li, P. Wang, G. Li, J. Yang, Appl. Catal., B 2018, 227, 512.
- 35C. Li, X. Du, S. Jiang, Y. Liu, Z. Niu, Z. Liu, S. Yi, X. Yue, Adv. Sci. 2022, 9, 2201773.
- 36P. Li, X. Zhao, C. Jia, H. Sun, L. Sun, X. Cheng, L. Liu, W. Fan, J. Mater. Chem. A 2013, 1, 3421.
- 37R. Yang, L. Mei, Y. Fan, Q. Zhang, R. Zhu, R. Amal, Z. Yin, Z. Zeng, Small Methods 2021, 5, 2100887.
- 38W. Feng, Y. Wang, X. Huang, K. Wang, F. Gao, Y. Zhao, B. Wang, L. Zhang, P. Liu, Appl. Catal., B 2018, 220, 324.
- 39G. Liu, Y. Yang, Y. Li, T. Zhuang, X. Li, J. Wicks, J. Tian, M. Gao, J. Peng, H. Ju, L. Wu, Y. Pan, L. A. Shi, H. Zhu, J. Zhu, S. Yu, E. H. Sargent, Nat. Commun. 2021, 12, 4296.
- 40R. Das, A. Patra, S. K. Dutta, S. Shyamal, N. Pradhan, J. Am. Chem. Soc. 2022, 144, 18629.
- 41Y. Liu, J. Sun, X. Zhou, C. Lv, Y. Zhou, B. Cong, G. Chen, Chem. Eng. J. 2022, 437, 135280.
- 42C. Zhao, B. Li, J. Liu, Q. Zhang, Angew. Chem., Int. Ed. 2021, 60, 4448.
- 43C. Dai, J. Lim, M. Wang, L. Hu, Y. Chen, Z. Chen, H. Chen, S. J. Bao, B. Shen, Y. Li, G. Henkelman, M. Xu, Adv. Funct. Mater. 2018, 28, 1704443.
- 44Y. He, Appl. Surf. Sci. 2017, 421, 260.
- 45K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Nat. Commun. 2016, 7, 11470.
- 46C. Fu, X. Li, J. Yang, Chem. Sci. 2021, 12, 2863.
- 47X. Hao, Q. Guo, M. Li, Z. Jin, Y. Wang, Catal. Sci. Technol. 2020, 10, 5267.
- 48H. Wang, Y. Xia, N. Wen, Z. Shu, X. Jiao, D. Chen, Appl. Catal., B 2022, 300, 120717.
- 49H. Wang, Y. Xia, H. Li, X. Wang, Y. Yu, X. Jiao, D. Chen, Nat. Commun. 2020, 11, 3078.
- 50C. T. Yeh, C. Tu, J. Chem. Eng. Data 2007, 52, 1760.
- 51G. Vazquez, E. Alvarez, J. M. Navaza, J. Chem. Eng. Data 1995, 40, 611.
- 52L. Chen, W. Yang, X. Li, L. Han, M. Wei, J. Mater. Chem. A 2019, 7, 10331.