Electronic Structure Engineering of Pt Species over Pt/WO3 toward Highly Efficient Electrocatalytic Hydrogen Evolution
Xueliang Fan
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCong Liu
Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorBoxu Gao
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorHe Li
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYahong Zhang
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Hongbin Zhang
Institute for Preservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai, 200433 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qingsheng Gao
College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaoming Cao
Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yi Tang
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorXueliang Fan
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCong Liu
Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorBoxu Gao
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorHe Li
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYahong Zhang
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Hongbin Zhang
Institute for Preservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai, 200433 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qingsheng Gao
College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaoming Cao
Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yi Tang
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Pt-based supported materials, a widely used electrocatalyst for hydrogen evolution reaction (HER), often experience unavoidable electron loss, resulting in a mismatching of electronic structure and HER behavior. Here, a Pt/WO3 catalyst consisting of Pt species strongly coupled with defective WO3 polycrystalline nanorods is rationally designed. The electronic structure engineering of Pt sites on WO3 can be systematically regulated, and so that the optimal electron-rich Pt sites on Pt/WO3-600 present an excellent HER activity with only 8 mV overpotential at 10 mA cm−2. Particularly, the mass activity reaches 7015 mA mg−1 at the overpotential of 50 mV, up to 26-fold higher than that of the commercial Pt/C. The combination of experimental and theoretical results demonstrates that the O vacancies of WO3 effectively mitigate the tendency of electron transfer from Pt sites to WO3, so that the d-band center could reach an appropriate level relative to Fermi level, endowing it with a suitable . This work identifies the influence of the electronic structure on catalytic activity.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
smll202301178-sup-0001-SuppMat.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Schmidt, K. Gruber, M. Klingler, C. Klöckl, L. Ramirez Camargo, P. Regner, O. Turkovska, S. Wehrle, E. Wetterlund, Energy Environ. Sci. 2019, 12, 2022.
- 2Q. Gao, W. Zhang, Z. Shi, L. Yang, Y. Tang, Adv. Mater. 2019, 31, 1802880.
- 3J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong, J. B. Baek, Nat. Nanotechnol. 2017, 12, 441.
- 4D. Chen, R. Lu, Z. Pu, J. Zhu, H.-W. Li, F. Liu, S. Hu, X. Luo, J. Wu, Y. Zhao, S. Mu, Appl. Catal., B 2020, 279, 119396.
- 5H. Xie, Z. Zhao, T. Liu, Y. Wu, C. Lan, W. Jiang, L. Zhu, Y. Wang, D. Yang, Z. Shao, Nature 2022, 612, 673.
- 6K. Xiao, R.-T. Lin, J.-X. Wei, N. Li, H. Li, T. Ma, Z.-Q. Liu, Nano Res. 2022, 15, 4980.
- 7F. Zhang, J. Chen, G. G. Wallace, J. Yang, Prog. Mater. Sci. 2023, 133, 101069.
- 8Y. Liu, Y. Chen, Y. Tian, T. Sakthivel, H. Liu, S. Guo, H. Zeng, Z. Dai, Adv. Mater. 2022, 34, 2203615.
- 9G. Di Liberto, L. A. Cipriano, G. Pacchioni, J. Am. Chem. Soc. 2021, 143, 20431.
- 10Y. Wu, W. Wei, R. Yu, L. Xia, X. Hong, J. Zhu, J. Li, L. Lv, W. Chen, Y. Zhao, L. Zhou, L. Mai, Adv. Funct. Mater. 2022, 32, 2110910.
- 11Y. Wang, B. Zhu, B. Cheng, W. Macyk, P. Kuang, J. Yu, Appl. Catal., B 2022, 314, 121503.
- 12J. Zhang, J. Dang, X. Zhu, J. Ma, M. Ouyang, F. Yang, Appl. Catal., B 2023, 325,122296.
- 13J. Zhu, L. Hu, P. Zhao, L. Y. S. Lee, K. Y. Wong, Chem. Rev. 2020, 120, 851.
- 14Y. Li, Y. Sun, Y. Qin, W. Zhang, L. Wang, M. Luo, H. Yang, S. Guo, Adv. Energy Mater. 2020, 10, 1902130.
- 15Z. Zhao, H. Liu, W. Gao, W. Xue, Z. Liu, J. Huang, X. Pan, Y. Huang, J. Am. Chem. Soc. 2018, 140, 9046.
- 16J. N. Tiwari, S. Sultan, C. W. Myung, T. Yoon, N. Li, M. Ha, A. M. Harzandi, H. J. Park, D. Y. Kim, S. S. Chandrasekaran, W. G. Lee, V. Vij, H. Kang, T. J. Shin, H. S. Shin, G. Lee, Z. Lee, K. S. Kim, Nat. Energy 2018, 3, 773.
- 17S. Ye, F. Luo, Q. Zhang, P. Zhang, T. Xu, Q. Wang, D. He, L. Guo, Y. Zhang, C. He, X. Ouyang, M. Gu, J. Liu, X. Sun, Energy Environ. Sci. 2019, 12, 1000.
- 18Y. Qu, B. Chen, Z. Li, X. Duan, L. Wang, Y. Lin, T. Yuan, F. Zhou, Y. Hu, Z. Yang, C. Zhao, J. Wang, C. Zhao, Y. Hu, G. Wu, Q. Zhang, Q. Xu, B. Liu, P. Gao, R. You, W. Huang, L. Zheng, L. Gu, Y. Wu, Y. Li, J. Am. Chem. Soc. 2019, 141, 4505.
- 19Y. Lai, Z. Zhang, Z. Zhang, Y. Tan, L. Yu, W. Wu, Z. Wang, T. Jiang, S. Gao, N. Cheng, Chem. Eng. J. 2022, 435, 135102.
- 20C. Fan, X. Jiang, J. Chen, X. Wang, S. Qian, C. Zhao, L. Ding, D. Sun, Y. Tang, Small Struct. 2020, 2, 2000017.
10.1002/sstr.202000017 Google Scholar
- 21J. Wei, K. Xiao, Y. Chen, X.-P. Guo, B. Huang, Z.-Q. Liu, Energy Environ. Sci. 2022, 15, 4592.
- 22J.-X. Wei, M.-Z. Cao, K. Xiao, X.-P. Guo, S.-Y. Ye, Z.-Q. Liu, Small Struct. 2021, 2, 2100047.
- 23Q. Yang, H. Liu, P. Yuan, Y. Jia, L. Zhuang, H. Zhang, X. Yan, G. Liu, Y. Zhao, J. Liu, S. Wei, L. Song, Q. Wu, B. Ge, L. Zhang, K. Wang, X. Wang, C. R. Chang, X. Yao, J. Am. Chem. Soc. 2022, 144, 2171.
- 24D. Wang, H. Li, N. Du, W. Hou, Adv. Funct. Mater. 2021, 31, 2009770.
- 25H. Tian, X. Cui, L. Zeng, L. Su, Y. Song, J. Shi, J. Mater. Chem. A 2019, 7, 6285.
- 26Z. W. Wei, H. J. Wang, C. Zhang, K. Xu, X. L. Lu, T. B. Lu, Angew. Chem., Int. Ed. 2021, 60, 16622.
- 27T. Ma, H. Cao, S. Li, S. Cao, Z. Zhao, Z. Wu, R. Yan, C. Yang, Y. Wang, P. A. van Aken, L. Qiu, Y. G. Wang, C. Cheng, Adv. Mater. 2022, 34, 2206368.
- 28Y. Shi, Z. R. Ma, Y. Y. Xiao, Y. C. Yin, W. M. Huang, Z. C. Huang, Y. Z. Zheng, F. Y. Mu, R. Huang, G. Y. Shi, Y. Y. Sun, X. H. Xia, W. Chen, Nat. Commun. 2021, 12, 3021.
- 29X. Cheng, Y. Lu, L. Zheng, M. Pupucevski, H. Li, G. Chen, S. Sun, G. Wu, Mater. Today Energy 2021, 20, 100653.
- 30C. Li, L. Zhang, Y. Zhang, Y. Zhou, J. Sun, X. Ouyang, X. Wang, J. Zhu, Y. Fu, Chem. Eng. J. 2022, 428, 131085.
- 31S. Liu, Y. Shen, Y. Zhang, B. Cui, S. Xi, J. Zhang, L. Xu, S. Zhu, Y. Chen, Y. Deng, W. Hu, Adv. Mater. 2022, 34, 2106973.
- 32J. Li, H.-X. Liu, W. Gou, M. Zhang, Z. Xia, S. Zhang, C.-R. Chang, Y. Ma, Y. Qu, Energy Environ. Sci. 2019, 12, 2298.
- 33L. Zhu, H. Lin, Y. Li, F. Liao, Y. Lifshitz, M. Sheng, S. T. Lee, M. Shao, Nat. Commun. 2016, 7, 12272.
- 34L. H. Sun, Q. Y. Li, S. N. Zhang, D. Xu, Z. H. Xue, H. Su, X. Lin, G. Y. Zhai, P. Gao, S. I. Hirano, J. S. Chen, X. H. Li, Angew. Chem., Int. Ed. 2021, 60, 25766.
- 35D. Cao, H. Xu, H. Li, C. Feng, J. Zeng, D. Cheng, Nat. Commun. 2022, 13, 5843.
- 36J. Ma, Y. Ren, X. Zhou, L. Liu, Y. Zhu, X. Cheng, P. Xu, X. Li, Y. Deng, D. Zhao, Adv. Funct. Mater. 2017, 28, 1705268.
- 37T. Zheng, W. Sang, Z. He, Q. Wei, B. Chen, H. Li, C. Cao, R. Huang, X. Yan, B. Pan, S. Zhou, J. Zeng, Nano Lett. 2017, 17, 7968.
- 38Y. Wang, C. Peng, T. Jiang, J. Zhang, Z. Jiang, X. Li, J. Mater. Chem. A 2021, 9, 3036.
- 39Y. Wang, J. Cai, M. Wu, J. Chen, W. Zhao, Y. Tian, T. Ding, J. Zhang, Z. Jiang, X. Li, Appl. Catal., B 2018, 230, 398.
- 40Y. Zheng, K. Fu, Z. Yu, Y. Su, R. Han, Q. Liu, J. Mater. Chem. A 2022, 10, 14171.
- 41S. Y. Wu, X. M. Ren, J. L. Zhang, X. L. Wu, L. Z. Liu, J. Phys. D: Appl. Phys. 2017, 50, 365304.
- 42W. X. Li, Z. Y. Liu, S. C. Yang, J. N. Wu, L. Sun, E. G. Ma, H. G. Yang, X. Guo, Sci. China Mater. 2022, 65, 3435.
- 43W. Zhou, C.-L. Dong, Y. Wang, Y.-C. Huang, L. He, H.-W. Chang, S. Shen, Nano Res. 2020, 14, 2285.
- 44L. Peng, L. Su, X. Yu, R. Wang, X. Cui, H. Tian, S. Cao, B. Y. Xia, J. Shi, Appl. Catal., B 2022, 308, 121229.
- 45Y. Li, Z. Liu, J. Li, M. Ruan, Z. Guo, J. Mater. Chem. A 2020, 8, 6256.
- 46X. Fan, C. Liu, M. Wu, B. Gao, L. Zheng, Y. Zhang, H. Zhang, Q. Gao, X. Cao, Y. Tang, Appl. Catal., B 2022, 318, 121867.
- 47Y. Zhao, P. V. Kumar, X. Tan, X. Lu, X. Zhu, J. Jiang, J. Pan, S. Xi, H. Y. Yang, Z. Ma, T. Wan, D. Chu, W. Jiang, S. C. Smith, R. Amal, Z. Han, X. Lu, Nat. Commun. 2022, 13, 2430.
- 48X. Fan, H. Zhang, B. Gao, H. Lu, L. Zheng, X. Yang, Y. Zhang, Q. Gao, Y. Tang, Carbon 2020, 170, 558.
- 49N. Chen, W. Zhang, J. Zeng, L. He, D. Li, Q. Gao, Appl. Catal., B 2020, 268, 118441.
- 50Y. Liu, J. Ding, F. Li, X. Su, Q. Zhang, G. Guan, F. Hu, J. Zhang, Q. Wang, Y. Jiang, B. Liu, H. B. Yang, Adv. Mater. 2023, 35, 2207114.
- 51Y. Pan, K. Sun, Y. Lin, X. Cao, Y. Cheng, S. Liu, L. Zeng, W.-C. Cheong, D. Zhao, K. Wu, Z. Liu, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, Nano Energy 2019, 56, 411.
- 52W. Wang, Y. Wu, Y. Lin, J. Yao, X. Wu, C. Wu, X. Zuo, Q. Yang, B. Ge, L. Yang, G. Li, S. Chou, W. Li, Y. Jiang, Adv. Funct. Mater. 2021, 32, 2108464.
- 53C. Li, Z. Chen, H. Yi, Y. Cao, L. Du, Y. Hu, F. Kong, R. Kramer Campen, Y. Gao, C. Du, G. Yin, I. Y. Zhang, Y. Tong, Angew. Chem., Int. Ed. 2020, 59, 15902.
- 54G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 55J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 2008, 100, 136406.